The coefficients $d_{k}(n)$ given by the power series $$\left(\frac{x}{\sin x}\right)^{n}=\sum_{k=0}^{\infty}d_{k}(n)\frac{x^{2k}}{(2k)!}$$ are polynomials in $n$ of degree $k$. First few examples: $$d_{0}(n)=1,\quad d_{1}(n)=\frac{n}{3}, \quad d_{2}(n)=\frac{2 n}{15}+\frac{n^2}{3}, \quad d_{3}(n)=\frac{16n}{63}+\frac{2 n^{2}}{3}+\frac{5n^3}{9}.$$ Question: Is there an explicit formula for the coefficients of polynomials $d_{k}(n)$?
Remark: I am aware of their connection with the Bernoulli polynomials of higher order $B_{n}^{(a)}(x)$. Namely, one has $d_{k}(n)=(-4)^{k}B_{2k}^{(n)}(n/2)$. This formula and several other alternative expressions can be found in the book of N. E. Norlund (Springer, 1924) but none of them seems to be very helpful.