1
$\begingroup$

Let $m>n$ be positive integers. Consider the following sum: \begin{equation} S(m,n)=\sum_{k=0}^n F_{k+1} \frac{{m-1\choose{k}} {n-1\choose{k}}}{ {m+n-1\choose{2k+1}} {2k\choose{k}}}, \end{equation} where $F_k$ denotes the $k$th Fibonacci number. I would like to understand how $S(m,n)$ varies as a function of $m$ and $n$, and possibly upper/lower bound $S(m,n)$ in terms of an explicit function of $m,n$ (as opposed to a series sum).

$\endgroup$

1 Answer 1

4
$\begingroup$

First notice that $$\frac{{m-1\choose{k}} {n-1\choose{k}}}{ {m+n-1\choose{2k+1}} {2k\choose{k}}} = \frac{(m-1)!(n-1)!(m+n-2-2k)!}{(2k+1)(n-1-k)!(m-1-k)!(m+n-1)!} = \frac{(2k+1)\binom{m+n-2-2k}{n-1-k}}{(m+n-1)\binom{m+n-2}{n-1}}.$$ Then $\binom{m+n-2-2k}{n-1-k}$ can be expressed as $$\binom{m+n-2-2k}{n-1-k}=[x^{n-1-k}]\ \frac{1}{\sqrt{1-4x}}\left(\frac{1-\sqrt{1-4x}}{2x}\right)^{m-n},$$ where $[x^d]$ is the operator taking the coefficient of $x^d$.

Similarly we can express $(2k+1)F_{k+1}$ as $$(2k+1)F_{k+1}=[x^{2k}]\ \frac{\partial}{\partial x}\frac{x}{1-x^2-x^4} = [x^{2k}]\ \frac{1+x^2+3x^4}{(1-x^2-x^4)^2} = [x^k]\ \frac{1+x+3x^2}{(1-x-x^2)^2}.$$ Hence, $$S(m,n) = \frac{1}{(m+n-1)\binom{m+n-2}{n-1}}\cdot [x^{n-1}]\ \frac{1+x+3x^2}{(1-x-x^2)^2\sqrt{1-4x}}\left(\frac{1-\sqrt{1-4x}}{2x}\right)^{m-n}$$ $$=\frac{1}{(m+n-1)\binom{m+n-2}{n-1}}\cdot [y^{n-1}]\ \frac{1+y+2y^2-6y^3+3y^4}{(1-y+2y^3-y^4)^2(1-y)^m},$$ where the latter expression is obtained with Lagrange inversion. The asymptotic of the coefficients of this generating function can now be obtained with the standard methods.

$\endgroup$

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge that you have read and understand our privacy policy and code of conduct.

Not the answer you're looking for? Browse other questions tagged or ask your own question.