6
$\begingroup$

I have the series

$\sum_{n=0}^{\infty}(-1)^{n}a_{n}(\nu)\frac{\sin[\nu\,(m-n)]}{\nu\,(m^2-n^2)}=\frac{1}{m}$,

where $m$ is an integer. Is it possible to compute the coefficients $a_{n}(\nu)$? An exact solution is found for $\nu=\pi$:

$a_0=1, a_{n}=2\times(-1)^n$.

It is related to a well known problem of Pierce's electrodes in physics. My problem also deals with the Pierce electrodes but in a different geometry. I found a numerical solution for the most wanted value $\nu=2\pi/3$ using SVD pseudoinverse but is not satisfactory in a certain sense. Since the above equation for $a_{n}$ looks simple it is hoped that a simple solution to the problem might exist.

Attached sequence of numerical solutions of the truncated system

$\sum_{n=0}^{N}(-1)^{n}a_{n}(\nu)\frac{\sin[\nu\,(m-n)]}{\nu\,(m^2-n^2)}=\frac{1}{m}$,

seems to indicate that the numerical solution slowly converges to an oscillating function.

Numerical solution for $N=60$ equations: Numerical solution for <span class=$N=60$ equations">

Numerical solution for $N=120$ equations: Numerical solution for <span class=$N=120$ equations">

Numerical solution for $n=240$ equations: Numerical solution for <span class=$N=240$ equations">

$\endgroup$
6
  • $\begingroup$ Are there some additional conditions on $a_n(\nu)$ or am I misreading something? Why couldn't you just take all $a_n(\nu)$ to be zero except $a_0$. $\endgroup$
    – j.c.
    Oct 19, 2013 at 7:57
  • $\begingroup$ @j.c.:Indeed, that is the obvious solution: $a_n=\delta_{n,0}$ with $\nu\rightarrow 0$. $\endgroup$
    – Jon
    Oct 19, 2013 at 12:04
  • 1
    $\begingroup$ @j.c: $a_n$ may not depend on $m$. It is assumend that $m$ runs from 1 to $\infty$, so we have infinite number of equations. $\endgroup$ Oct 20, 2013 at 11:44
  • $\begingroup$ Looks like weakly-* converging to something strange... For further numerical investigation I would suggest not to use the pure pseudo-inverse but some regularization in the solution of the truncated linear system. Probably ordinary Tikhonov-regularization, i.e. solving $(A^*A + \alpha I)a = A^*b$ (where $A$ is the coefficient matrix and $b$ is the right hand side $b_m = 1/m$) with some small $\alpha$, would be helpful to see what the limit may be. Moreover, one may want to couple $\alpha$ to $N$ in some clever way. Also: Is it clear that a solution exists? $\endgroup$
    – Dirk
    Oct 21, 2013 at 7:25
  • $\begingroup$ @Dirk, I thought that SVD pseudoinverse is a sort of regularization method so that Tikhonov-regularization is not needed. $\endgroup$ Oct 23, 2013 at 8:48

1 Answer 1

1
$\begingroup$

Here is an approach that leads to an integral equation for $$A(\nu,t) := \sum_{n=0}^{\infty}(-1)^{n}\frac{a_{n}(\nu)}{\nu} e^{Int}.$$

First we notice that $$(-1)^{n}\frac{a_{n}(\nu)}{\nu} = \frac{1}{2\pi} \int_0^{2\pi} A(\nu,t) e^{-Int}\,dt.$$

The given identity multiplied by $e^{2mz}$ can be restated as \begin{split} \frac{e^{2mz}}{m} &= \sum_{n=0}^{\infty}(-1)^{n}a_{n} (\nu)\frac{\sin[\nu\,(m-n)]}{\nu\,(m^2-n^2)}e^{2mz} \\ &= (-1)^{m}\frac{a_m(\nu)e^{2mz}}{2m} + \sum_{n=0}^{m-1} (-1)^{n}\frac{a_{n} (\nu)}{\nu}\sin(\nu\,(m-n)) \frac{e^{(m-n)z}}{m-n}\frac{e^{(m+n)z}}{m+n} + \sum_{n=m+1}^{\infty} (-1)^{n}\frac{a_{n} (\nu)}{\nu}\sin(\nu\,(n-m)) \frac{e^{-(n-m)z}}{n-m}\frac{e^{(m+n)z}}{m+n}. \end{split}

For the first sum, we have

\begin{split} &\sum_{n=0}^{m-1} \frac{1}{2\pi}\int_0^{2\pi}dt\, A(\nu,t)e^{-Int} \Im e^{I\nu(m-n)} \int_{-\infty}^z dx\,e^{(m-n)x} \int_{-\infty}^z dy\,e^{(m+n)y} \\ =&\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^z dx\, \int_{-\infty}^z dy\, e^{(I\nu+x+y)m} \sum_{n=0}^{m-1} e^{(-It-I\nu-x+y)n}\\ =&\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^z dx\, \int_{-\infty}^z dy\, e^{(I\nu+x+y)m} \frac{1-e^{(-It-I\nu-x+y)m}}{1-e^{-It-I\nu-x+y}}\\ =&\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^z dx\, \int_{-\infty}^z dy\, \frac{e^{(I\nu+x+y)m}-e^{(-It+2y)m}}{1-e^{-It-I\nu-x+y}}. \end{split}

Similarly, for the second sum \begin{split} &\sum_{n=m+1}^{\infty} \frac{1}{2\pi}\int_0^{2\pi}dt\, A(\nu,t)e^{-Int} \Im e^{I\nu(n-m)} \int_{-\infty}^{-z} dx\,e^{(n-m)x} \int_{-\infty}^z dy\,e^{(m+n)y} \\ =&\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^{-z} dx\, \int_{-\infty}^z dy\, e^{(-I\nu-x+y)m} \sum_{n=m+1}^{\infty} e^{(-It+I\nu+x+y)n}\\ =&\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^{-z} dx\, \int_{-\infty}^z dy\, e^{(-I\nu-x+y)m} \frac{e^{(-It+I\nu+x+y)(m+1)}}{1-e^{-It+I\nu+x+y}}\\ =&\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^{-z} dx\, \int_{-\infty}^z dy\, e^{-It+I\nu+x+y} \frac{e^{(-It+2y)m}}{1-e^{-It+I\nu+x+y}}. \end{split}

Finally, $$(-1)^{m}\frac{a_m(\nu)e^{2mz}}{2m} = \frac{\nu}{2\pi}\int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^z dy\, e^{(-It+2y)m}.$$


Summing over $m=1,2,\dots$, we get \begin{split} -\log(1-e^{2z}) &= \frac{\nu}{2\pi}\int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^z dy\, \frac{e^{-It+2y}}{1-e^{-It+2y}} \\ &+\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^z dx\, \int_{-\infty}^z dy\, \frac{ \frac{e^{I\nu+x+y}}{1-e^{I\nu+x+y}}-\frac{e^{-It+2y}}{1-e^{-It+2y}}}{1-e^{-It-I\nu-x+y}}\\ &+\frac{1}{2\pi}\Im \int_0^{2\pi}dt\, A(\nu,t) \int_{-\infty}^{-z} dx\, \int_{-\infty}^z dy\, \frac{e^{-2It+I\nu+x+3y}}{(1-e^{-It+I\nu+x+y})(1-e^{-It+2y})}. \end{split}

Evaluating integrals over $x$ and $y$ (which is a techincal task) will give an integral equation for $A(\nu,t)$.

$\endgroup$

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge that you have read and understand our privacy policy and code of conduct.

Not the answer you're looking for? Browse other questions tagged or ask your own question.