We know that the number of decomposition as a sum of four squares of $n\in\mathbb{N}$ such that $n=a^2 + b^2 + c^2 + d^2$ is : $$ r_4(n) = 8 \sum_{d\mid n, 4\nmid d}{d} $$ And there is a more general one from this answer.
But is there any restriction of this function to $a,b,c,d\in\mathbb{N}^*$ ?