Can you prove or disprove the following claim:
Let $U(n,P,Q)$ be the nth generalized Lucas number of the first kind and let $m$ be a natural number. Then, $$\sqrt{m}=1+\displaystyle\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot (m-1)^n}{U(n,2,1-m) \cdot U(n+1,2,1-m)}$$
The SageMath cell that demonstrates this claim can be found here.