Could someone help me with the following question? This is equivalent to my previous question A conjecture about the barycenter of a polytope
Let D be a differential operator defined as follows, D:=∏1≤i≤j≤n(∂xi+∂xi+1+⋯∂xj)2. Let fj(x1,⋯,xn), j=1,⋯,n, be linear functions defined as follows. f1(x1,⋯,xn)==2x1−x2,f2(x1,⋯,xn)=2x2−x3−x1,⋯fj(x1,⋯,xn)=2xj−xj+1−xj−1,⋯fn−1(x1,⋯,xn)=2xn−1−xn−xn−2,fn(x1,⋯,xn)=2xn−xn−1.
Consider the following functions, J(y1,⋯,yn,x1,⋯,xn):=n∏i=1(∞∑k=1ykik!fk−1i),J1(y1,⋯,yn,x1,⋯,xn):=(∞∑k=2yk1k!fk−21)⋅n∏i=2(∞∑k=1ykik!fk−1i),⋯Jj(y1,⋯,yn,x1,⋯,xn):=(∞∑k=2ykjk!fk−2j)⋅n∏i=1i≠j(∞∑k=1ykik!fk−1i),⋯Jn(y1,⋯,yn,x1,⋯,xn):=(∞∑k=2yknk!fk−2n)⋅n−1∏i=1(∞∑k=1ykik!fk−1i).
Take (¯y1,⋯,¯yi,⋯,¯yn)=(n+1,⋯,i(n+1−i)+1,⋯,n+1).
I am curious if the following inequality is true. D(J−Jj)|(y1,⋯,yn,x1,⋯,xn)=(¯y1,⋯,¯yi,⋯,¯yn,0,0,⋯,0)>0,j=1,2,⋯,n.
Thanks in advance!