All Questions
Tagged with ag.algebraic-geometry k3-surfaces
143
questions
30
votes
1
answer
2k
views
Enriques surfaces over $\mathbb Z$
Does there exist a smooth proper morphism $E \to \operatorname{Spec} \mathbb Z$ whose fibers are Enriques surfaces?
By a theorem of, independently, Fontaine and Abrashkin, combined with the Enriques-...
23
votes
2
answers
4k
views
construct the elliptic fibration of elliptic k3 surface
Hi all,
As we know, every elliptic k3 surface admits an elliptic fibration over $P^1$, but generally how do we construct this fibration? For example, how to get such a fibration for Fermat quartic?
...
20
votes
4
answers
3k
views
Does $(x^2 - 1)(y^2 - 1) = c z^4$ have a rational point, with z non-zero, for any given rational c?
I need this result for something else. It seems fairly hard, but I may be missing something obvious.
Just one non-trivial solution for any given $c$ would be fine (for my application).
19
votes
1
answer
747
views
Vector field on a K3 surface with 24 zeroes
In https://mathoverflow.net/a/44885/4177, Tilman points out that one can use a $K3$ surface minus the zeroes of a generic vector field to build a nullcobordism for $24[SU(2)]$. Given that a) this is a ...
16
votes
4
answers
1k
views
K3 surfaces with good reduction away from finitely many places
Let S be a finite set of primes in Q. What, if anything, do we know about K3 surfaces over Q with good reduction away from S? (To be more precise, I suppose I mean schemes over Spec Z[1/S] whose ...
15
votes
1
answer
933
views
Curves on K3 and modular forms
The paper of Bryan and Leung "The enumerative geometry of $K3$ surfaces and modular forms" provides the following formula. Let $S$ be a $K3$ surface and $C$ be a holomorphic curve in $S$ representing ...
14
votes
2
answers
2k
views
How to compute the Picard rank of a K3 surface?
I'm curious about the following question:
Given a K3 surface, how does one proceed to compute its rank?
Of course the answer may depend on the form of the input, i.e. how the K3 is "given". So
...
14
votes
1
answer
906
views
Rational curves on the Fermat quartic surface
Let $X$ be the Fermat quartic $x^4+y^4+z^4+w^4=0$ in $\mathbb P^3$. It is known that $X$ contains infinitely many $(-2)$-curves, that is, smooth rational curves. (One way to obtain in infinitely many ...
14
votes
0
answers
520
views
Am I missing something about this notion of Mirror Symmetry for abelian varieties?
This is a continuation of my recent question: Mirror symmetry for polarized abelian surfaces and Shioda-Inose K3s.
In the comments of the question, I was directed to the paper http://arxiv.org/abs/...
12
votes
3
answers
1k
views
A K3 over $P^1$ with six singular $A_1$- fibers?
Hirzebruch, in the paper 'Arrangements of Lines and Algebraic Surfaces'
constructs a special $K3$ surface out of a 'complete quadrilateral' in
$CP^2$. A complete quadritlateral consists of
4 ...
12
votes
2
answers
1k
views
What classes am I missing in the Picard lattice of a Kummer K3 surface?
Constructing the Kummer K3 of an Abelian surface $A$, we have an obvious 22-dimensional collection of classes in $H^2(K3, \mathbb{Z})$ given by the 16 (-2)-curves (which by construction do not ...
12
votes
1
answer
674
views
Dodecahedral K3?
In pondering
this
MO question and in particularly its 1st answer, and answers to
this one recently posed, I realized there ought to be a dodecahedral K3 surface $X$.
This $X$ would fiber as an ...
11
votes
1
answer
860
views
Non-algebraic K3 surfaces in characteristic $p$
I have a very naive question.
Recall that over the field of complex numbers, there exist non-algebraic K3 surfaces. Namely, smooth non-projective simply connected compact complex surfaces with ...
11
votes
0
answers
774
views
Torelli-like theorem for K3 surfaces on terms of its étale cohomology
Is there a proof of a Torelli-like Theorem for a K3-surface over any field (non complex) in terms of its etale or crystalline cohomology?
For example: If $K\ne \mathbb{C} $ and $X\rightarrow \...
10
votes
1
answer
595
views
K3 surfaces that correspond to rational points of elliptic curves
In his work on mirror symmetry (http://arxiv.org/pdf/alg-geom/9502005v2.pdf) Igor Dolgachev has considered families of K3 surfaces of Picard rank at least 19 with the base given by $X_0(n)^+$, the ...
9
votes
2
answers
752
views
Is the mirror of a hyperkaehler manifold always a hyperkaehler manifold?
Is the mirror of a hyperkaehler manifold always a hyperkaehler manifold?
What I know so far is as follows:
In this paper (https://arxiv.org/pdf/hep-th/9512195.pdf) by Verbitsky, it is claimed that ...
9
votes
2
answers
727
views
Do singular fibers determine the elliptic K3 surface, generically?
General elliptic K3 surfaces. Consider K3 surfaces of Picard rank two with Neron-Severi lattice isomorphic to $$\left[\begin{array}{cc}
2d & t \\
t & 0
\end{array}\right]$$ for some positive ...
8
votes
3
answers
1k
views
Seeking concrete examples of "generic" elliptic fibrations of K3 surfaces
For me a K3 surface will be a smooth complex projective variety of dimension 2 that is simply-connected and has trivial canonical bundle. Given a K3 surface $X$, an elliptic fibration $\pi \colon X \...
8
votes
2
answers
452
views
Necessary condition on Calabi-Yau manfiold to be a hypersurface in a Fano manifold
Let $X$ be a smooth projective Calabi-Yau threefold. Are there any known obstructions to it
being a member of a base-point-free linear system in a nef-Fano fourfold?
What, in anything, is known ...
8
votes
1
answer
758
views
To what extent does Poincare duality hold on moduli stacks?
Poincare duality gives us, for a smooth orientable $n$-manifold, an isomorphism $H^k(M) \to H_{n-k}(M)$ given by $\gamma \mapsto \gamma \frown [M]$ where $[M]$ is the fundamental class of the manifold,...
8
votes
1
answer
250
views
Primitivity of subgroups in the Picard groups of anticanonical $K3$ surfaces
Let $X$ be a smooth projective threefold with $h^{0,1}(X) = h^{0,2}(X)=0$ that has a smooth anticanonical section $D$.
Then $D$ is necessarily a $K3$ surface.
Consider a subgroup
$$Pic_X(D) = i^*(Pic(...
8
votes
1
answer
664
views
A question on an elliptic fibration of the Enriques surface
Let $S$ be an Enriques surface over complex numbers. It is known that $S$ admits an elliptic fibration over $\mathbb{P}^1$ with $12$ nodal singular fibers and $2$ double fibers. How can I see this ...
8
votes
0
answers
336
views
Concrete example of $K3$ surfaces with Picard number 18 and does not admit Shioda-Inose structure?
I am looking for some explicit examples of (elliptic) $K3$-families defined over a number field (better to be over $\mathbb{Q}$) with Picard number $18$ but does not admit Shioda-Inose structure, i.e. ...
8
votes
0
answers
715
views
Hirzebruch $\chi_y$ genus of a K3 surface
I would like to compute the $\chi_y$ genus of an elliptically fibered K3 surface.
For $X$ a compact algebraic manifold, Hirzebruch's $\chi_y$ genus is defined as $\chi_y (X) = \sum_{p,q} (-1)^{p+q} h^...
8
votes
0
answers
392
views
Mirror symmetry for polarized abelian surfaces and Shioda-Inose K3s
It is well known (cf. Dolgachev) that there is a beautiful notion of mirror symmetry for lattice-polarized K3 surfaces. That is, if we are given a rank $r$ lattice $M$ of signature $(1, r - 1)$ and a ...
7
votes
3
answers
907
views
2-cycle of K3 surface
Hi there,
I want to ask about the 2-cycle of K3 surface.
As we know, its betti number $b_2$=22, so there will be 22 2-cycle generators.
Is there any topological way to figure out such cycles direct?...
7
votes
2
answers
850
views
Polarizations of K3 surfaces over finite fields
Suppose that $X$ is a (projective) K3 surface over a field $k$. A polarization of $X$ is an element $\lambda\in Pic_X(k)$ that is represented over an algebraic closure $\overline{k}$ by an ample line ...
7
votes
1
answer
450
views
Do non-projective K3 surfaces have rational curves?
Define a compact Kähler surface $X$ to be a K3 surface if $X$ is simply connected, $K_X \simeq \mathcal{O}_X$, and $h^{0,1}=0$. If $X$ is projective, then a theorem typically attributed to Bogomolov ...
7
votes
1
answer
548
views
Discriminant locus of elliptic K3 surfaces
Given a complex elliptic K3 surface $\pi\colon X\rightarrow \mathbb P^1$, its discriminant locus is the divisor $$D = \sum_{i = 1}^s n_i P_i$$ on $\mathbb P^1$ such that $n_i$ is equal to the Euler-...
7
votes
1
answer
285
views
$K3$ surfaces admitting finite non-symplectic group actions are projective
I have read somewhere that "$K3$ surfaces admitting finite non-symplectic group actions are projective". Could someone remind me of a proof?
7
votes
1
answer
406
views
Is there a purely inseparable covering $\mathbb{A}^2 \to K$ of a Kummer surface $K$ over $\mathbb{F}_{p^2}$?
Let $E_i\!: y_i^2 = x_i^3 + a_4x_i + a_6$ be two copies ($i = 1$, $2$) of a supersingular elliptic curve over a finite field $\mathbb{F}_{p^2}$, for odd prime $p > 3$. Consider the Kummer surface $...
7
votes
0
answers
228
views
K3 surfaces with no −2 curves
I seem to remember that a K3 surface with big Picard rank always
has smooth rational curves.
This question is equivalent to the following question about integral quadratic lattices. Let us call a ...
6
votes
1
answer
737
views
Is any K3 surface of degree 8 in P^5 the complete intersection of quadrics?
Here the base field is the field of complex numbers.
6
votes
1
answer
901
views
Complex structures on a K3 surface as a hyperkähler manifold
A hyperkähler manifold is a Riemannian manifold of real dimension $4k$ and holonomy group contained in $Sp(k)$. It is known that every hyperkähler manifold has a $2$-sphere $S^{2}$ of complex ...
6
votes
2
answers
387
views
adjacency matrix of a graph and lines on quartic surfaces
Suppose you are given a smooth quartic surface $X$ in $\mathbb P^3$. I would like to find an upper bound for the number of lines on $X$ in the case that there is no plane intersecting the curves in ...
6
votes
1
answer
330
views
automorphism group of K3 surfaces
It is known that smooth complex hypersurfaces with degree bigger than 2 and dimension bigger than 1 have finite automorphism groups, except for K3 surfaces.
But the group of polarised automorphisms ...
6
votes
1
answer
253
views
Loci in the moduli space of K3 surfaces associated to lattices
The moduli space of K3 surfaces forms a 20-dimensional family with countably many 19-dimensional components $M_d$ corresponding to the polarized K3s $(X,L)$ with $L^2=d$. The moduli space $M_d$ has a ...
6
votes
0
answers
264
views
Exceptional quartic K3 surfaces
Recall that a $K3$ surface is called exceptional if its Picard number is 20.
The Fermat quartic $K3$ surface in $\mathbb P^3$ is exceptional.
My question is,
Are there infinitely many non-...
6
votes
0
answers
176
views
Find an explicit quasi-smooth embedding $X_{38} \subset \mathbb P(5, 6, 8, 19)$
This question is not quite about research-level mathematics, so I apologize for bringing it here. I asked it in Math.SE first, but I got no answers, and only a suggestion to ask it here.
Consider the ...
6
votes
0
answers
198
views
Produce supersingular K3 from rational elliptic surfaces
Given a rational elliptic surface $R \to \Bbb P^1$, is there a way to know if there exists a supersingular K3 surface that arises as a base curve change $S=R\times_{\Bbb P^1} \Bbb P^1 \to \Bbb P^1$, ...
6
votes
0
answers
199
views
Are all these K3 surfaces supersingular?
Consider all the smooth K3 surfaces given by $X^4+W^2X^2+XW^3 = f(Y,Z,W)$ or $X^4+XW^3 = g(Y,Z,W)$ over $\mathbb F_{2}$ with $f$ or $g$ homogenous of degree 4. There are a lot of choices for $f$ and $...
6
votes
0
answers
570
views
Semistable minimal model of a $K3$-surface and the special fibre
Suppose that $K$ is a $p$-adic field, that is a field of characteristic $0$ whose ring of integers is a complete discrete valuation ring $\mathcal O_K$ and with residue field $k$ (algebraic closed) of ...
6
votes
0
answers
299
views
Non minimal K3 surfaces as hypersurfaces of weighted projective spaces
I recently learnt that the hypersurface
$$
S:=(x^2+y^3+z^{11}+w^{66}=0) \subset \mathbb{P}(33,22,6,1)
$$
is birational to a K3 surface. This is surprising because the surface is quasi-smooth, well-...
6
votes
0
answers
850
views
Possible automorphism groups of a K3 surface
Which finite groups are automorphism groups of polarized K3 surfaces (let's say over ℂ)?
...and does the answer change is I remove "polarized"?
(polarized = equipped with an ample line bundle)
5
votes
3
answers
2k
views
K3 surface of genus 8
Let $V$ be a complex vector space of dimension 6 and let $G\subset {\mathbb P}^{14}\simeq {\mathbb P}(\Lambda^2V)$ be the image of the Plucker embedding of the Grassmannian $Gr(2, V)$.
Why the degree ...
5
votes
2
answers
940
views
Are any two K3 surfaces over C diffeomorphic?
Let $S$ be a K3 surface over $\mathbb{C}$, that is, $S$ is a simply connected compact smooth complex surface whose canonical bundle is trivial. I recall reading somewhere that any two such surfaces ...
5
votes
2
answers
522
views
density of singular K3 surfaces
By singular K3 I mean a smooth complex K3 with Néron-Severi rank equal to 20.
Are singular K3 surfaces dense in the moduli space of polarized K3 surfaces?
5
votes
2
answers
632
views
Action of automorphisms of a $K3$ surface on its $(-2)$-curves
Consider a complex $K3$ surface $X$ and take its group of automorphisms $Aut(X)$. It is a known fact that the action of $Aut(X)$ on the set of rational $-2$ curves of $X$ has only finite number of ...
5
votes
2
answers
1k
views
Singular models of K3 surfaces
Let us work over a ground field of characteristic zero. As is well-known, a K3 surface is a smooth projective geometrically integral surface $X$ whose canonical class $\omega_X$ is trivial and for ...
5
votes
1
answer
799
views
Reference request: Generic k3 surface has Picard number 1
I keep running into the statement that "the generic k3 surface has Picard rank 1".
For instance the answer of this question (end) and this paper (following Example 1.1) or this paper (proof ...