All Questions
Tagged with analytic-geometry berkovich-geometry
6
questions
14
votes
0
answers
709
views
Cohesive ∞-toposes for analytic geometry
There is a class of big ∞-toposes that come with a good supply of intrinsic notions of differential geometry and differential cohomology: called cohesive ∞-toposes (after Lawvere's cohesive toposes).
...
6
votes
1
answer
200
views
Why are Berkovich spaces locally connected?
A characteristic feature of Berkovich spaces is that they are locally connected (in fact, locally contractible). I'd like to understand the proof. The key ingredient seems to be Corollary 2.2.8 in ...
5
votes
0
answers
181
views
Berkovich Integration on algebraic curves
Berkovich developed a theory of integrating one-forms on his analytic spaces in his book "Integration of One-forms on $P$-adic analytic spaces". As this book is difficult to digest for me, I ...
4
votes
0
answers
211
views
What information does the topology of nonarchimedean Berkovich analytic spaces encode?
Given a finite type scheme $X$ over $\Bbb{C}$ we can associate to it an analytic space $X^\text{an}$. There are then comparison theorems comparing invariants of the topological space $X^\text{an}$ ...
1
vote
1
answer
170
views
Reference request: Gruson's theorem on the tensor product of Banach spaces over a non-Archimedean field
I am looking for a reference for theorem 3.21 of these notes: https://web.math.princeton.edu/~takumim/Berkovich.pdf
The theorem states that if $k$ is a non-Archimedean field and $X$ and $Y$ are $k$-...
1
vote
0
answers
168
views
Contractibility of the quotient of an analytification of a smooth variety by a finite group (if the field is trivially valued)
Let $k$ be a field and $X$ be a smooth irreducible $k$-variety with an action of a finite group $G$. I consider $k$ as a trivially valued field.
It is known from results of Berkovich ("Smooth p-...