All Questions
3
questions
2
votes
0
answers
94
views
Real analytic periodic function whose critical points are fully denegerated
I have asked this question on MathStackExchange. My question: is there any non-constant real analytic function $f:\mathbb{R}^n\rightarrow\mathbb{R}$ such that, $$\nabla f(x_0)=0 \Rightarrow \nabla^2 f(...
1
vote
1
answer
216
views
Examples of $C^{k,1}$ functions which are not $C^{k+1}$?
I'm currently reading this paper and the authors define the set $C^{k,1}(\mathbb{R}^n)$ as consisting of all functions $f:\mathbb{R}^n\rightarrow \mathbb{R}$ having $k$ derivatives and for which:
$$
\|...
0
votes
1
answer
306
views
Uniform approximation of indicator function of a point
Fix $x \in \mathbb{R}$ and let $I_{[x]}$ be its indicator function. Does anyone know of a sequence of (obviously) discontinuous approximations $g_n$ to $I_{[x]}$ such that
$g_n$ converge uniformly ...