All Questions
4
questions
12
votes
0
answers
171
views
A connected Borel subgroup of the plane
It is known that the complex plane $\mathbb C$ contain dense connected (additive) subgroups with dense complement but each dense path-connected subgroup of $\mathbb C$ necessarily coincides with $\...
4
votes
1
answer
315
views
Is there a topologizable group admitting only Raikov-complete group topologies?
Definition. A group $G$ is called complete (resp. non-topologizable) if each Hausdorff group topology on $G$ is Raikov-complete (resp. discrete). It is clear that each non-topologizable group is ...
9
votes
1
answer
393
views
Meager subgroups of compact groups
Suppose we have an infinite compact (Hausdorff) group $G$, and a subgroup $H\leq G$ which is meagre.
Can $H$ always be covered by a countable family of nowhere dense sets $H_n$ such that $H_n^2$ is ...
3
votes
1
answer
400
views
Action on a compact group
If $G$ is an infinite compact group, how many orbits can $G$ have under the group action of its continuous automorphisms ?