All Questions

Filter by
Sorted by
Tagged with
17 votes
3 answers
1k views

Is there a natural measurable structure on the $\sigma$-algebra of a measurable space?

Let $(X, \Sigma)$ denote a measurable space. Is there a non-trivial $\sigma$-algebra $\Sigma^1$ of subsets of $\Sigma$ so that $(\Sigma, \Sigma^1)$ is also a measurable space? Here is one natural ...
Tom LaGatta's user avatar
  • 8,322
6 votes
0 answers
679 views

What is the structure of a space of $\sigma$-algebras?

Let $X$ be a compact metric space, and consider the Banach space $\Omega = C(X,\mathbb R)$ of continuous, real-valued functions on $X$, equipped with the supremum norm. Let $\delta_x \in \Omega^*$ be ...
Tom LaGatta's user avatar
  • 8,322