All Questions
5
questions
2
votes
0
answers
45
views
$\sigma$-compactness of probability measures under a refined topology
Denote Polish spaces $(X, \tau_x)$ and $(Y, \tau_y)$, where $X$ and $Y$ are closed subsets of $\mathbb{R}$. Consider a Borel measurable function $f: (X \times Y, \tau_x \times \tau_y) \rightarrow \...
5
votes
1
answer
202
views
Is the topology of weak+Hausdorff convergence Polish?
Let $X$ be a compact metric space, $P_X$ the set of Borel probability measures on $X$, and $K_X$ the set of non-empty closed subsets of $X$. I will define the "topology of weak+Hausdorff ...
-1
votes
1
answer
148
views
Continuity of function mapping $\mathcal{P}(\mathcal{P}(X))$ to $\mathcal{P}(X)$ [closed]
Given a topological space $Y$, let $\mathcal{P}(Y)$ be the set of all probability measures on $Y$, endowed with the weak* topology.
Let $X$ be a topological space (for convenience, it might be Polish ...
4
votes
1
answer
1k
views
Quotients of standard Borel spaces
Let $X$ and $Y$ be standard Borel spaces: topological spaces homeomorphic to Borel subsets of complete metric spaces. Given a surjective Borel map $f:X\to Y$, we get an equivalence relation $\sim_f\...
17
votes
4
answers
1k
views
Continuity on a measure one set versus measure one set of points of continuity
In short: If $f$ is continuous on a measure one set, is there a function $g=f$ a.e. such that a.e. point is a point of continuity of $g$?
Now more carefully, with some notation: Suppose $(X, d_X)$ ...