All Questions
1
question
17
votes
3
answers
1k
views
Is there a natural measurable structure on the $\sigma$-algebra of a measurable space?
Let $(X, \Sigma)$ denote a measurable space. Is there a non-trivial $\sigma$-algebra $\Sigma^1$ of subsets of $\Sigma$ so that $(\Sigma, \Sigma^1)$ is also a measurable space?
Here is one natural ...