$\newcommand{\dmod}{\text{-}\mathrm{mod}}$ Let $A$ be a finite-dimensional $k$-algebra, $A\dmod$ be a category of finite-dimensional A-modules and $\mathrm{U}_A:A\dmod \to \textbf{Vect}_k$ be a forgetful functor. We can reconstruct $A$ as $\mathrm{End}(\mathrm{U}_A)$ by using Tannaka reconstruction thorem.
Question : Does the claim hold even if the assumption of "finite-dimensional" is excluded?