All Questions

Filter by
Sorted by
Tagged with
15 votes
1 answer
933 views

Curves on K3 and modular forms

The paper of Bryan and Leung "The enumerative geometry of $K3$ surfaces and modular forms" provides the following formula. Let $S$ be a $K3$ surface and $C$ be a holomorphic curve in $S$ representing ...
IBazhov's user avatar
  • 600
12 votes
2 answers
1k views

What classes am I missing in the Picard lattice of a Kummer K3 surface?

Constructing the Kummer K3 of an Abelian surface $A$, we have an obvious 22-dimensional collection of classes in $H^2(K3, \mathbb{Z})$ given by the 16 (-2)-curves (which by construction do not ...
Simon Rose's user avatar
  • 6,242
8 votes
1 answer
758 views

To what extent does Poincare duality hold on moduli stacks?

Poincare duality gives us, for a smooth orientable $n$-manifold, an isomorphism $H^k(M) \to H_{n-k}(M)$ given by $\gamma \mapsto \gamma \frown [M]$ where $[M]$ is the fundamental class of the manifold,...
Simon Rose's user avatar
  • 6,242