All Questions
3
questions
15
votes
1
answer
933
views
Curves on K3 and modular forms
The paper of Bryan and Leung "The enumerative geometry of $K3$ surfaces and modular forms" provides the following formula. Let $S$ be a $K3$ surface and $C$ be a holomorphic curve in $S$ representing ...
12
votes
2
answers
1k
views
What classes am I missing in the Picard lattice of a Kummer K3 surface?
Constructing the Kummer K3 of an Abelian surface $A$, we have an obvious 22-dimensional collection of classes in $H^2(K3, \mathbb{Z})$ given by the 16 (-2)-curves (which by construction do not ...
8
votes
1
answer
758
views
To what extent does Poincare duality hold on moduli stacks?
Poincare duality gives us, for a smooth orientable $n$-manifold, an isomorphism $H^k(M) \to H_{n-k}(M)$ given by $\gamma \mapsto \gamma \frown [M]$ where $[M]$ is the fundamental class of the manifold,...