All Questions

Filter by
Sorted by
Tagged with
2 votes
1 answer
330 views

Sheaves with zero Chern classes on a $K3$ surface.

Let $S$ be a $K3$ surface. Is it true that any sheaf on $S$ with zero Chern classes is isomorphic to $\mathcal{O}_S^{\oplus n}$ for some $n$? If not, do you have any counterexample?
ginevra86's user avatar
  • 753
2 votes
1 answer
400 views

Picard/cohomology lattice of surfaces of low degree in $\mathbb P^3$

Let $S_{d>3}\subset\mathbb{P}^3_{\mathbb{C}}$ be a smooth surface of degree $d$. What is known (where to read?) about the Picard/cohomology lattice for small d? e.g. for $d=4$ the cohomology ...
Dmitry Kerner's user avatar
2 votes
1 answer
117 views

Fixed locus in the linear system associated to the ramification locus of a K3 double cover of a Del Pezzo surface

Let $X$ be a (smooth) del Pezzo surface over $\mathbb{C}$. Let $\Delta_0$ be a (smooth irreducible) generic curve in the linear system $|-2K_X|$. Let $\rho : S \rightarrow X$ be the double cover of $X$...
Libli's user avatar
  • 7,100
2 votes
1 answer
316 views

$K3$ surfaces can't be uniruled

Let $S$ be a uniruled surface, ie admits a dominant map $ f:X \times \mathbb{P}^1$. Why then it's canonical divisor $\omega_X$ cannot be trivial? Motivation: I want to understand why $K3$ surfaces ...
user267839's user avatar
  • 5,716
2 votes
1 answer
168 views

Concrete descriptions of $S^1$-bundles over smooth manifold $Y$ underying a K3 surface

Let $Y$ be the smooth manifold underlying a K3 surface. As a manifold, $Y$ is diffeomorphic to $\{[x_0:x_1:x_2:x_3]\in\mathbb{C}P^3\colon X_0^4+x_1^4+X_2^4+X_3^4=1\}$. It is well known that $H^2(Y,\...
James's user avatar
  • 133
2 votes
1 answer
265 views

Common gerbes over two K3 surfaces

Let $X$ and $Y$ be K3 surfaces over the complex numbers. Under what assumptions, do there exist a finite group $G_X$ a finite group $G_Y$ a $G_X$-gerbe $\mathcal{X}\to X$ (for the fppf topology) a $...
Neeroen123's user avatar
2 votes
1 answer
460 views

Isometry of K3 surface.

Let $S$ be a K3 surface and $\iota$ be anti-symplectic involution of $S$. Suppose that $g$ is a Kahler-Einstein metric on $S$. My question is; Why $\iota$ is an isometry of $S$ with respect to $g$?...
Zheng's user avatar
  • 21
2 votes
0 answers
148 views

Automorphisms of finite order on $K3$ surfaces

Is there a $K3$ surface (algebraic, complex) that has infinitely many automorphisms of finite order? Many K3 surfaces have infinite automorphism groups. In particular, all K3 surfaces of Picard ...
Basics's user avatar
  • 1,821
2 votes
0 answers
169 views

Automorphisms of a K3 surface

I was studying the following algebraic surface in $\mathbb{P}^5$ defined by the following three quadrics: \begin{cases} x^2 + xy + y^2=w^2\\ x^2 + 3xz + z^2=t^2\\ y^2 + 5yz + z^2=s^2. \...
did's user avatar
  • 585
2 votes
0 answers
245 views

Example of a K3 surface with two non-symplectic involutions

$\DeclareMathOperator\Pic{Pic}$Let $X$ be a K3 surface (algebraic, complex). An involution $\sigma:X\rightarrow X$ is called non-symplectic if it acts as multiplication by $-1$ on $H^{2,0}(X)=\Bbb{C}\...
Basics's user avatar
  • 1,821
2 votes
0 answers
179 views

rational curves over K3 surfaces over $\mathbb{Q}$

There are many partial results towards the following conjecture: Every projective K3 surface over an algebraically closed field contains infinitely many integral rational curves. My question is: is ...
did's user avatar
  • 585
2 votes
0 answers
152 views

Degree $4$ curves on K3 double covers of Del-Pezzo surfaces

Let $S$ be a smooth del-Pezzo surface and $\pi : X \longrightarrow S$ be the double cover of $S$ ramified in a smooth section of $-2K_S$. Going through the classification of del-Pezzo surfaces, one ...
Libli's user avatar
  • 7,100
2 votes
0 answers
191 views

2 K3s and cubic fourfolds containing a plane

Two K3 surfaces show up when talking about cubic fourfolds containing a plane. Let $P\subset X\subset \mathbb{P}^5$ be the plane inside the cubic. Since $P$ is cut out by 3 linear equations then $X$ ...
IMeasy's user avatar
  • 3,697
2 votes
0 answers
141 views

Is there a way to explicitly find any rational $\mathbb{F}_p$-curve on the Kummer surface?

Consider a finite field $\mathbb{F}_p$ (where $p \equiv 1 \ (\mathrm{mod} \ 3)$, $p \equiv 3 \ (\mathrm{mod} \ 4)$), $\mathbb{F}_{p^2}$-isomorphic elliptic curves (of $j$-invariant $0$) $$ E\!:y_1^2 = ...
Dimitri Koshelev's user avatar
2 votes
0 answers
318 views

Relation between Beauville-Bogomolov form and Intersection Product on Hilbert scheme of K3 surfaces

I am learning about Hilbert scheme of points $S^{[n]}$ on projective K3 surfaces S. Since these are hyperkähler varieties, the second cohomology $H^2(S^{[n]},\mathbb{Z})$ is endowed with the non-...
Nico Berger's user avatar
2 votes
0 answers
85 views

The quotient of a superspecial abelian surface by the involution

Let $E_i\!: y_i^2 = f(x_i)$ be two copies of a supersingular elliptic curve over a field of odd characteristics. Consider the involution $$ i\!: E_1\times E_2 \to E_1\times E_2,\qquad (x_1, y_1, x_2, ...
Dimitri Koshelev's user avatar
2 votes
0 answers
259 views

Elliptic fibrations on the Fermat quartic surface

Consider the Fermat quartic surface $$ x^4 + y^4 + z^4 + t^4 = 0 $$ over an algebraically closed field $k$ of characteristics $p$, where $p \equiv 3$ ($\mathrm{mod}$ $4$). Is there the full ...
Dimitri Koshelev's user avatar
2 votes
0 answers
204 views

Is the Fermat quartic surface a generalized Zariski surface?

Consider the Fermat quartic surface $$F\!: x^4 + y^4 + z^4 + t^4 = 0$$ over an algebraically closed field $k$ of odd characterstics $p$. Shioda proved that for $p=3$ this surface is a generalized ...
Dimitri Koshelev's user avatar
2 votes
0 answers
115 views

Is there a hyperkaehler manifold whose mirror is the total space of a tangent/cotangent bundle?

I am looking for an example of a hyperkaehler manifold $Y$ whose mirror is the total space of a tangent bundle $TX$ or a cotangent bundle $T^*X$, where $X$ can be any Riemannian manifold. Is such a ...
Mtheorist's user avatar
  • 1,105
2 votes
0 answers
236 views

Is the mirror of a noncompact hyperkaehler manifold also hyperkaehler?

This is essentially a follow-up question from 'Is the mirror of a hyperkaehler manifold always a hyperkaehler manifold?'. Verbitsky's theorem in (https://arxiv.org/pdf/hep-th/9512195.pdf) says that ...
Mtheorist's user avatar
  • 1,105
2 votes
0 answers
100 views

Could we construct an inverse transform for the equivalence $D^b(X)\to D^b(M)$ between a K3 surface and its moduli space of semistable sheaves?

Let $X$ be a K3 surface and fix an ample line bundle on $X$. Let $v\in \widetilde{H}(X,\mathbb{Z})$ be a Mukai vector and $M(v)$ be the moduli space of semi-stable coherent sheaves on $X$ with Mukai ...
Zhaoting Wei's user avatar
  • 8,637
2 votes
0 answers
321 views

Stability notion to smoothing varieties under a flat deformation with a smooth total space

Is there any stability notion that led to an algebraic variety be smoothable in general for Fano varieties or for Calabi-Yau varieties? Note that Friedman found a nesessary condition that $X$ to be ...
user avatar
2 votes
0 answers
146 views

Open Period Integrals of Elliptically Fibered K3 surfaces

Let M be the period domain for elliptic K3 surfaces $(X,\Omega)$ with a holomorphic two-form. Denote the fiber class $f$. Then $$M=\{\Omega\in f^\perp\otimes \mathbb{C}\,:\, \Omega\cdot \Omega=0, \,\...
Philip Engel's user avatar
  • 1,493
2 votes
0 answers
884 views

Cubic fourfold and K3 surface: geometric constructions of Hodge isometry

Hodge structure on K3 surface (the middle line of Hodge diamond is 1 20 1) is similar to the Hodge structure of cubic fourfold (the middle line of Hodge diamond of primitive cohomology is 0 1 20 1 0). ...
IBazhov's user avatar
  • 600
2 votes
0 answers
131 views

Coherent systems on K3 surfaces

Does anyone know whether the theory of coherent systems on $K3$ surfaces has been studied and, if yes, can you give me a reference? In particular, is there an analogue of Gieseker stability and of ...
ginevra86's user avatar
  • 753
2 votes
2 answers
317 views

What are sufficient and necessary conditions to be a generalized Zariski surface over a finite field?

Let $X$ be an absolutely irreducible reduced surface over a finite field $k$ of characteristic $p$. What are sufficient and necessary conditions for $X$ to be a generalized Zariski surface over $k$ (...
Dimitri Koshelev's user avatar
1 vote
1 answer
756 views

Picard group of a K3 surface generated by a curve

In Lazarsfeld's article "Brill Noether Petri without degenerations" he mentions the fact that for any integer $g \geq 2$, one may find a K3 surface $X$ and a curve $C$ of genus $g$ on $X$ such that ...
Youloush's user avatar
  • 355
1 vote
2 answers
459 views

Isotrivial K3 family and Picard number

Is it true that any family of K3 surfaces over $\mathbb{C}$ whose Picard number is constant is isotrivial? Here isotrivial means locally analytically trivial. Speculation: Let $\mathcal{M}$ be the ...
Pooya's user avatar
  • 11
1 vote
1 answer
228 views

One-dimensional family of complex algebraic K3 surfaces

Let $X$ be an algebraic complex K3 surface, we know that $X$ is deformation equivalent to a smooth quartic surface or more generally a K3 surface with Picard number $1$ (a very general K3 surface in ...
user avatar
1 vote
2 answers
509 views

An ample line bundle on a K3 surface

Let $X$ be a K3 surface obtained as a double covering of $\mathbb{P}^1 \times \mathbb{P}^1$ branching along a $(4,4)$-divisor. I think the natural line bundle $\pi^*\mathcal{O}_{\mathbb{P}^1\times \...
user48202's user avatar
1 vote
1 answer
180 views

Is this an embedding of $S^{[2]}$?

The intersection of 3 quadrics in $P^5$ is a K3 surface $S$. There is a natural map $S^{[2]} \to G(1,5)$ well defined everywhere, because a generic K3 doesn't contain any line and this family is ...
sqrt2sqrt2's user avatar
1 vote
1 answer
235 views

$K3$ surfaces in $\mathbb P^1 \times \mathbb P^1 \times \mathbb P^1$

I am considering $K3$ surfaces in $\mathbb P^1 \times \mathbb P^1 \times \mathbb P^1$ with an automorphism that preserves an ample divisor class. For an automorphism $\rho$ of a $K3$ surface, let ${\...
Basics's user avatar
  • 1,821
1 vote
1 answer
355 views

Infinitely many rational nt multisection in elliptic K3 surfaces by deformation theory

I'm trying to read this paper of Bogomolov and Tschinkel http://arxiv.org/pdf/math/9902092.pdf about potential density of rational points on elliptic K3 Surfaces. I got quite stuck in Corollary 3.27 ...
Angelo's user avatar
  • 13
1 vote
1 answer
245 views

Linear system on an abelian surface

On a K3 surface $S$, a linear system $|C|$ is said to be hyperelliptic if the corresponding map is of degree 2 and the image is of degree $g_a(C)-1$ in $\mathbb P^{g_a}$. For $g_a(C) > 2$, if $|C|...
sqrt2sqrt2's user avatar
1 vote
0 answers
128 views

complex K3 surfaces with automorphisms of given orders

Concerning complex K3 surfaces, there are various methods to show the non-existence of an automorphism of certain orders. The usually way is to investigate the action of the automorphism on the space $...
user avatar
1 vote
0 answers
135 views

Obstruction in construction of some lattices, related with $K3$ surfaces

I am considering a certain $K3$ surface that is lattice-polarized in two ways. This leads to the following simple problem in lattice theory: (Let me borrow notations for lattice from Ch.14 of this ...
Basics's user avatar
  • 1,821
1 vote
0 answers
111 views

Does the Mukai's lemma hold for non-algebraic $K3$ surfaces?

In Huybrechts' book Fourier-Mukai Transforms in Algebraic Geometry I found the following result due to Mukai (Page 232, Lemma 10.6) Let $X$ and $Y$ be two $K3$ surfaces. Then the Mukai vector of any ...
Zhaoting Wei's user avatar
  • 8,637
1 vote
0 answers
125 views

Global section of unstable vector bundles comparing with (semi)stable vector bundles

Let $X$ be a smooth projective variety, say it is a K3 surface. Fix a Chern character $(ch_0,ch_1,ch_2)$. Then if we consider the global sections of all the possible (semi)stable vector bundles and ...
Peter Liu's user avatar
  • 253
1 vote
0 answers
133 views

Automorphic representation of weight 3 eigenforms

Let $f$ be a weight 3 eigenform with rational Fourier coefficients. As shown by Elkies and Schutt, $f$ is associated to a singular K3 surface over $\mathbb{Q}$. A construction of Shioda and Inose ...
Goro's user avatar
  • 167
1 vote
0 answers
86 views

Picard numbers of isogenous K3 surfaces over a non-closed field

Let $S_1, S_2$ be K3 surfaces defined over a field $k$ and $\phi\!: S_1 \dashrightarrow S_2$ a dominant rational $k$-map (so-called isogeny). It is known that $\rho(S_1) = \rho(S_2)$ for the complex ...
Dimitri Koshelev's user avatar
0 votes
1 answer
1k views

Neron-Severi Lattice of Elliptic K3

I'm trying to compute Neron-Severi lattices of some K3 surfaces. They have elliptic fibrations with multiple sections. Setting one section to be the identity section, I can write down a Weierstrass ...
user4192's user avatar
  • 309
0 votes
0 answers
258 views

Classification of Elliptic singularity

For a $K_3$ surface $X$, if there exists a holomorphic surjective map $X\to \mathbb P^1$, with elliptic fibres, i.e. for any generic point on $\mathbb P^1$ whose fiber is diffeomorphic to a torus $\...
DLIN's user avatar
  • 1,905
0 votes
0 answers
179 views

$T^2$-fibered K3 surface with involution

Let $S$ be a K3 surface and $f:S\rightarrow \mathbb{P}^1$ a $T^2$-fibration (not necessarily holomorphic, I have a special Langrangian fibration in mind). Assume there is a $k$-section, then a fiber ...
Carmen's user avatar
  • 1

1 2
3