All Questions
Tagged with k3-surfaces algebraic-surfaces
16
questions with no upvoted or accepted answers
6
votes
0
answers
199
views
Are all these K3 surfaces supersingular?
Consider all the smooth K3 surfaces given by $X^4+W^2X^2+XW^3 = f(Y,Z,W)$ or $X^4+XW^3 = g(Y,Z,W)$ over $\mathbb F_{2}$ with $f$ or $g$ homogenous of degree 4. There are a lot of choices for $f$ and $...
5
votes
0
answers
173
views
Is a Kummer surface over an finite field $\mathbb{F}_q$ supersingular iff $\mathbb{F}_q$-unirational?
Let $A$ be an abelian surface over an finite field $\mathbb{F}_q$. In particular, I am interested in the case when $A$ is a Jacobian variety. Is the Kummer surface $K_A/\mathbb{F}_q$ Shioda-...
4
votes
0
answers
86
views
Is there a way to calculate the Picard $\mathbb{F}_q$-number of an (rational or K3) elliptic surface?
Consider a finite field $\mathbb{F}_{q}$ and an elliptic surface
$$
\mathcal{E}\!: y^2 + a_1(t)xy + a_3(t)y = x^3 + a_2(t)x^2 + a_4(t)x + a_6,
$$
where $a_i(t) \in \mathbb{F}_{q}[t]$. Is there a way ...
4
votes
0
answers
279
views
What is the Artin invariant of an elliptic supersingular K3 surface?
Let $X$ be a supersingular K3 surface over an algebraically closed field $k$ of positive characteristic $\!p$. Artin proved in the paper https://eudml.org/doc/81948 that the determinant $\mathrm{disc}(...
3
votes
0
answers
235
views
A K3 cover over a Del Pezzo surface
Let $V \rightarrow \mathbb P^2$ be the blow-up at two distinct points. ($V$ is a Del Pezzo surface of degree 7.)
Choose a smooth curve $C$ from the linear system $|-2K_V|$ and let $S \rightarrow V$ be ...
3
votes
0
answers
262
views
Are unirational K3 surfaces defined over finite fields?
Is every supersingular (thus unirational for ${\rm char }\ k = p\geq 5$, from Liedtke) $K3$ surface defined over a finite field? I guess this is true for Kummer surfaces, for example, since ...
3
votes
0
answers
541
views
The Jacobian surface of an elliptic surface
Let $\mathcal{X}$ be an elliptic surface over $\mathbb{P}^1$ without a section and let $\mathcal{J}$ be an elliptic surface over $\mathbb{P}^1$ with a section. Assume we have the commutative diagram
\...
2
votes
0
answers
148
views
Automorphisms of finite order on $K3$ surfaces
Is there a $K3$ surface (algebraic, complex) that has infinitely many automorphisms of finite order?
Many K3 surfaces have infinite automorphism groups.
In particular, all K3 surfaces of Picard ...
2
votes
0
answers
169
views
Automorphisms of a K3 surface
I was studying the following algebraic surface in $\mathbb{P}^5$ defined by the following three quadrics:
\begin{cases}
x^2 + xy + y^2=w^2\\
x^2 + 3xz + z^2=t^2\\
y^2 + 5yz + z^2=s^2.
\...
2
votes
0
answers
245
views
Example of a K3 surface with two non-symplectic involutions
$\DeclareMathOperator\Pic{Pic}$Let $X$ be a K3 surface (algebraic, complex). An involution $\sigma:X\rightarrow X$ is called non-symplectic if it acts as multiplication by $-1$ on $H^{2,0}(X)=\Bbb{C}\...
2
votes
0
answers
179
views
rational curves over K3 surfaces over $\mathbb{Q}$
There are many partial results towards the following conjecture:
Every projective K3 surface over an algebraically closed field contains infinitely many integral rational curves.
My question is: is ...
2
votes
0
answers
141
views
Is there a way to explicitly find any rational $\mathbb{F}_p$-curve on the Kummer surface?
Consider a finite field $\mathbb{F}_p$ (where $p \equiv 1 \ (\mathrm{mod} \ 3)$, $p \equiv 3 \ (\mathrm{mod} \ 4)$), $\mathbb{F}_{p^2}$-isomorphic elliptic curves (of $j$-invariant $0$)
$$
E\!:y_1^2 = ...
2
votes
0
answers
85
views
The quotient of a superspecial abelian surface by the involution
Let $E_i\!: y_i^2 = f(x_i)$ be two copies of a supersingular elliptic curve over a field of odd characteristics. Consider the involution
$$
i\!: E_1\times E_2 \to E_1\times E_2,\qquad (x_1, y_1, x_2, ...
2
votes
0
answers
259
views
Elliptic fibrations on the Fermat quartic surface
Consider the Fermat quartic surface
$$
x^4 + y^4 + z^4 + t^4 = 0
$$
over an algebraically closed field $k$ of characteristics $p$, where $p \equiv 3$ ($\mathrm{mod}$ $4$).
Is there the full ...
2
votes
0
answers
204
views
Is the Fermat quartic surface a generalized Zariski surface?
Consider the Fermat quartic surface $$F\!: x^4 + y^4 + z^4 + t^4 = 0$$ over an algebraically closed field $k$ of odd characterstics $p$. Shioda proved that for $p=3$ this surface is a generalized ...
1
vote
0
answers
86
views
Picard numbers of isogenous K3 surfaces over a non-closed field
Let $S_1, S_2$ be K3 surfaces defined over a field $k$ and $\phi\!: S_1 \dashrightarrow S_2$ a dominant rational $k$-map (so-called isogeny). It is known that $\rho(S_1) = \rho(S_2)$ for the complex ...