All Questions

Filter by
Sorted by
Tagged with
7 votes
1 answer
406 views

Is there a purely inseparable covering $\mathbb{A}^2 \to K$ of a Kummer surface $K$ over $\mathbb{F}_{p^2}$?

Let $E_i\!: y_i^2 = x_i^3 + a_4x_i + a_6$ be two copies ($i = 1$, $2$) of a supersingular elliptic curve over a finite field $\mathbb{F}_{p^2}$, for odd prime $p > 3$. Consider the Kummer surface $...
Dimitri Koshelev's user avatar