$\newcommand\R{\mathbb R}\newcommand\Q{\mathcal Q}$For mutually orthogonal vectors unit vectors $a=[a_1,\dots,a_n]^T$ and $b=[b_1,\dots,b_n]^T$ in $\R^n=\R^{n\times1}$ (so that $n\ge2$) and for all $x=[x_1,x_2]^T\in\R^2$, let $$\|x\|_{a,b}:=\sum_{i=1}^n|a_i x_1+b_i x_2|\quad\text{and}\quad \|x\|_1:=|x_1|+|x_2|.$$ Let $$N_{a,b}:=\max\{\|x\|_1\colon x\in\R^2,\,\|x\|_{a,b}\le1\},$$ the norm of the identity operator on $\R^2$ with respect to the norms $\|\cdot\|_{a,b}$ and $\|\cdot\|_1$.
It was shown that the exact upper bound on $N_{a,b}$ over all mutually orthogonal unit vectors $a$ and $b$ in $\R^n$ is $\sqrt2$.
Now, for mutually orthogonal unit vectors $c$ and $d$ in $\R^n$, let $\Q_{c,d}$ denote the set of all orthogonal matrices $Q\in\R^{n\times n}$ whose first two columns are $c$ and $d$. For any $Q\in\Q_{c,d}$, let $a_Q$ and $b_Q$ denote the first two columns of the matrix $Q^T$.
Question: Can one give an explicit expression for $\min\{ N_{a_Q,b_Q}\colon Q\in\Q_{c,d}\}$?