Search Results
Search type | Search syntax |
---|---|
Tags | [tag] |
Exact | "words here" |
Author |
user:1234 user:me (yours) |
Score |
score:3 (3+) score:0 (none) |
Answers |
answers:3 (3+) answers:0 (none) isaccepted:yes hasaccepted:no inquestion:1234 |
Views | views:250 |
Code | code:"if (foo != bar)" |
Sections |
title:apples body:"apples oranges" |
URL | url:"*.example.com" |
Saves | in:saves |
Status |
closed:yes duplicate:no migrated:no wiki:no |
Types |
is:question is:answer |
Exclude |
-[tag] -apples |
For more details on advanced search visit our help page |
Questions about K3 surfaces, which are smooth complex surfaces $X$ with trivial canonical bundle and vanishing $H^1(O_X)$. They are examples of Calabi-Yau varieties of dimension $2$.
15
votes
Accepted
Is every algebraic $K3$ surface a quartic surface?
No. Consider a K3 surface with a polarization of degree 2 and with Picard rank 1. Since the tautological line bundle on $\mathbb{P}^3$ pulls back to a degree 4 line bundle, it follows that such a K3 s …
14
votes
0
answers
502
views
Am I missing something about this notion of Mirror Symmetry for abelian varieties?
This is a continuation of my recent question: Mirror symmetry for polarized abelian surfaces and Shioda-Inose K3s.
In the comments of the question, I was directed to the paper http://arxiv.org/abs/he …
12
votes
2
answers
1k
views
What classes am I missing in the Picard lattice of a Kummer K3 surface?
Constructing the Kummer K3 of an Abelian surface $A$, we have an obvious 22-dimensional collection of classes in $H^2(K3, \mathbb{Z})$ given by the 16 (-2)-curves (which by construction do not interse …
8
votes
1
answer
727
views
To what extent does Poincare duality hold on moduli stacks?
Poincare duality gives us, for a smooth orientable $n$-manifold, an isomorphism $H^k(M) \to H_{n-k}(M)$ given by $\gamma \mapsto \gamma \frown [M]$ where $[M]$ is the fundamental class of the manifold …
8
votes
0
answers
384
views
Mirror symmetry for polarized abelian surfaces and Shioda-Inose K3s
It is well known (cf. Dolgachev) that there is a beautiful notion of mirror symmetry for lattice-polarized K3 surfaces. That is, if we are given a rank $r$ lattice $M$ of signature $(1, r - 1)$ and a …