Search type Search syntax
Tags [tag]
Exact "words here"
Author user:1234
user:me (yours)
Score score:3 (3+)
score:0 (none)
Answers answers:3 (3+)
answers:0 (none)
isaccepted:yes
hasaccepted:no
inquestion:1234
Views views:250
Code code:"if (foo != bar)"
Sections title:apples
body:"apples oranges"
URL url:"*.example.com"
Saves in:saves
Status closed:yes
duplicate:no
migrated:no
wiki:no
Types is:question
is:answer
Exclude -[tag]
-apples
For more details on advanced search visit our help page
Results tagged with
Search options not deleted user 102390

Enriched categories, topoi, abelian categories, monoidal categories, homological algebra.

5 votes

Is there a Hopf algebra-style description of chain complexes?

$\newcommand{\AA}{\mathbf{A}}\newcommand{\GG}{\mathbf{G}}\newcommand{\Mod}{\mathrm{Mod}}\newcommand{\fil}{\mathrm{fil}}\newcommand{\QCoh}{\mathrm{QCoh}} \newcommand{\spec}{\mathrm{Spec}}$Let $R$ be a …
skd's user avatar
  • 5,520
1 vote

Can tangent ($\infty$,1)-categories be described in terms of the higher Grothendieck constru...

See the proof of Proposition 1.1.9 here https://arxiv.org/pdf/0709.3091v2.pdf.
skd's user avatar
  • 5,520
1 vote

Relation between different definitions of homotopy

$\newcommand{\Z}{\mathbf{Z}}$I'll talk about chain complexes over $\Z$ (although this works for any ring $R$). It looks like you're talking about cochain complexes in the question. Let $I$ be the anal …
skd's user avatar
  • 5,520
15 votes

Natural examples of $(\infty,n)$-categories for large $n$

$\newcommand{\Vect}{\mathrm{Vect}} \newcommand{\Mod}{\mathrm{Mod}} \newcommand{\cc}{\mathbf{C}}$Here are three (related) examples. The first one is simple (although not really related to physics): an …
9 votes

Which $\infty$-groupoids correspond to simplicial abelian groups?

$\newcommand{\Z}{\mathbf{Z}} \newcommand{\Mod}{\mathrm{Mod}}$Note that if $\Mod^{\geq 0}_\Z$ denotes the category of connective $\mathrm{H}\Z$-module spectra, then by the Dold-Kan correspondence and t …
skd's user avatar
  • 5,520
17 votes
Accepted

Unifying "cohomology groups classify extensions" theorems

$\newcommand{\cA}{\mathcal{A}}\newcommand{\Ext}{\mathrm{Ext}}\newcommand{\Hom}{\mathrm{Hom}}$Let $\cA$ be an abelian category; then, $\Ext_\cA^i(A,B)$ is literally $\Hom_{D(\cA)}(A, B[i])$, where $B[i …
skd's user avatar
  • 5,520
5 votes

Any news about equivalences of periodic triangulated or $\infty$-categories?

$\newcommand{\QCoh}{\mathrm{QCoh}} \newcommand{\Mod}{\mathrm{Mod}} \newcommand{\LMod}{\mathrm{LMod}} \newcommand{\spec}{\mathrm{Spec}} \newcommand{\Fun}{\mathrm{Fun}} \newcommand{\Z}{\mathbf{Z}} \newc …
skd's user avatar
  • 5,520
7 votes

Definition of $E_n$-modules for an $E_n$-algebra

$\newcommand{\E}{\mathbf{E}} \newcommand{\Mod}{\mathrm{Mod}} \newcommand{\cc}{\mathcal{C}}$Here's one way to think about $\E_n$-modules. Let $R$ be an $\E_n$-ring (in a presentable symmetric monoidal …
skd's user avatar
  • 5,520
10 votes

Surveys of Goodwillie Calculus

This is 7 years too late, but this survey (to appear in the Handbook of Homotopy Theory) is a really readable survey of Goodwillie calculus: https://arxiv.org/abs/1902.00803.
skd's user avatar
  • 5,520