All Questions

Filter by
Sorted by
Tagged with
1 vote
1 answer
216 views

Monotonicity of eigenvalues II

In a previous question here, I asked the question below for block matrices and received an answer showing the question is true if $\mathcal B$ is hermitian and false, in general if $\mathcal B$ is non-...
Sascha's user avatar
  • 496
6 votes
1 answer
524 views

Monotonicity of eigenvalues

We consider block matrices $$\mathcal A = \begin{pmatrix} 0 & A\\A^* & 0 \end{pmatrix}$$ and $$\mathcal B = \begin{pmatrix} 0 & B\\C & 0 \end{pmatrix}.$$ Then we define the new matrix $...
Sascha's user avatar
  • 496
1 vote
1 answer
192 views

Eigenvalues of operator

In the question here the author asks for the eigenvalues of an operator $$A = \begin{pmatrix} x & -\partial_x \\ \partial_x & -x \end{pmatrix}.$$ Here I would like to ask if one can extend ...
Kung Yao's user avatar
  • 192
6 votes
0 answers
144 views

Gap between consecutive Dirichlet eigenvalues

Suppose $\Omega \subset \mathbb R^2$ is a domain with a Lipschitz boundary and let $\{\lambda_k\}_{k=0}^n$ be the eigenvalues for the Laplacian operator on $\Omega$, that is to say $$ -\Delta \phi_k = ...
Ali's user avatar
  • 3,987
6 votes
0 answers
106 views

Eigenvalues of splitting scheme

In numerical analysis it is common to approximate a solution to a PDE $$u'(t) = (A+B) u(t), \quad u(0)=u_0$$ which is just given by $e^{t(A+B)}u_0$ by the splitting $e^{tB/2} e^{tA} e^{tB/2}u_0.$ Here,...
Sascha's user avatar
  • 496