All Questions

Filter by
Sorted by
Tagged with
2 votes
1 answer
240 views

Compactness for initial-to-final map for heat equation

Let $M$ be a compact smooth manifold without boundary. Let $T>0$ and let $g$ be a smooth Riemannian metric on $M$. Given any $f \in L^2(M)$ let $u$ be the unique solution to the equation $$\...
Ali's user avatar
  • 3,987
19 votes
1 answer
497 views

Do eigenfunctions determine the geometry of a manifold? If so, do finitely many suffice?

Let $X$ be a smooth, Riemannian manifold. It is known that the geometry of $X$ can be recovered from its heat kernel $k_{t}(x,y)$, using Varadhan's Lemma: $\displaystyle\lim_{t \to 0} t \log k_{t}(x,y)...
Elchanan Solomon's user avatar
6 votes
0 answers
179 views

Geometrically-explicit upper bound for on-diagonal heat kernel

Let $M$ be a compact Riemannian manifold, and $K(t;z,w)$ the heat kernel associated to the usual Laplace-Beltrami operator on functions. There are results of the form $$K(t;z,z) \leq \frac{C_M}{f_z(t)...
Giovanni De Gaetano's user avatar