All Questions
11
questions
3
votes
1
answer
195
views
Convergence of spectrum
Let $M$ be a compact manifold and $g_k$ be a sequence of Riemannain metrics smoothly converging to another Riemannian metric $g$.
Let $\{\lambda^k_j\}$ be the spectrum of the Laplacian of the ...
4
votes
1
answer
139
views
Existence of a domain with simple Dirichlet eigenvalues
Let $g$ be a smooth Riemannian metric on $\mathbb R^3$ that coincides with the Euclidean metric outside a compact set $K$. Does there exist some domain $\Omega$ with smooth boundary such that $K \...
4
votes
0
answers
121
views
Eigenvalues of Schrödinger operator with Robin condition on the boundary
Let $(M^2,g)$ be a compact Riemannian surface with boundary and let $L = \Delta_g + q$ be a Schrödinger operator, where $\Delta_g = -\operatorname{div} \nabla$ is the Laplacian with respect to the ...
4
votes
0
answers
74
views
On the convergence of the spectral decomposition of a harmonic function
Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n\geq 2$ with a smooth boundary. Denote by $0<\lambda_1\leq \lambda_2\leq\ldots$ the Dirichlet eigenvalues of $-\Delta_g$ on $(M,g)$...
2
votes
0
answers
78
views
Proving an eigenvalue bound without resorting to Weyl's law
Suppose $(M,g)$ is a smooth compact Riemannian manifold of dimension $n\geq 2$ with smooth boundary and denote by $\{\phi_k,\lambda_k\}_{k\in \mathbb N}$ its Dirihclet spectral decomposition for the ...
2
votes
0
answers
63
views
Weyl's law and eigenfunction bounds for weighted Laplace-Beltrami operator
I would appreciate any answers or even references for the following problem.
Let $(M,g)$ be a complete smooth Riemannian manifold with an asymptotically Euclidean metric (let's even say that the ...
2
votes
1
answer
240
views
Compactness for initial-to-final map for heat equation
Let $M$ be a compact smooth manifold without boundary. Let $T>0$ and let $g$ be a smooth Riemannian metric on $M$. Given any $f \in L^2(M)$ let $u$ be the unique solution to the equation
$$\...
2
votes
0
answers
140
views
Off-diagonal estimates for Poisson kernels on manifolds
Let $(M,g)$ be a complete Riemannian manifold, $\Delta$ its Laplace-Beltrami operator and $T_t = (e^{t \Delta})_{t \geq 0}$ the associated heat semigroup. We can define the subordinated Poisson ...
23
votes
1
answer
1k
views
Eigenvalues of Laplace operator
Assume that $(M,g)$ is a Riemannian manifold.
Is there any relation between the sequence of eigenvalues of Laplace operator acting on the space of smooth functions and the sequence of eigenvalues of ...
6
votes
0
answers
362
views
Steklov eigenvalue problem for a planar region bounded by ellipse
The Steklov problem for a compact planar region $\Omega$ is
\begin{cases} \Delta u =0 &\text{in $\Omega$}, \\ \frac{\partial u}{\partial n} = \sigma u &\text{on $\partial \Omega$},
\end{...
6
votes
2
answers
2k
views
Eigenvalues of Laplacian
What's the most natural way to establish the asymptotics of $\Delta$ on a compact Riemannian manifold $M$ of dimension $N$? The asymptotics should be
$$ \#\{v < A^2\} = \mathrm{const}\ast\mathrm{...