All Questions
31
questions
3
votes
1
answer
195
views
Convergence of spectrum
Let $M$ be a compact manifold and $g_k$ be a sequence of Riemannain metrics smoothly converging to another Riemannian metric $g$.
Let $\{\lambda^k_j\}$ be the spectrum of the Laplacian of the ...
13
votes
1
answer
375
views
Why are we interested in spectral gaps for Laplacian operators
Let $M$ be a Riemannian manifold and let $\Delta$ be its Laplacian operator. There is a large literature on a spectral gap for such a $\Delta$, that is, finding an interval $(0,c)$ which does not ...
1
vote
0
answers
96
views
Question about Dirac operator
Let $D$ be a generalized Dirac operator on a complete Riemannian manifold. I'm a little confused to prove that there exists a constant $c>0$ such that
$$\|D\sigma\|^2\geq c^2\|\sigma\|^2$$
for $\...
2
votes
0
answers
52
views
A question about the choice of a special harmonc spinor
Let $X$ be a complete Riemannian manifold and $H$ be the kernel of generalized Dirac operator $D$ on $L(S)$, where $S$ is the Dirac bundle. Let $K$ be a compact subset of $X$ and $K\subset \Omega$ be ...
5
votes
1
answer
305
views
Lower bound on the first eigenvalue of the Lichnerowicz Laplacian on positive Einstein manifolds
Suppose $(M^n,g)$ is an $n$-dimensional Einstein manifold with $Ric=(n-1)g$. Let $\lambda$ be the minimal eigenvalue of the Lichnerowicz Laplacian $\Delta_L$ defined on all transverse-traceless ...
4
votes
0
answers
128
views
Eigenvalues of Laplacian and eigenvalues of curvature operator
Let $(M^n,g)$ be a compact Riemannian manifold (without boundary). The symmetries of the curvature $R$ of (the Levi-Civita connection associated to) $g$ allow one to realise $R$ as a self-adjoint (...
7
votes
2
answers
517
views
Exponential convergence of Ricci flow
I've been trying to understand the asymptotic behavior of Ricci flow, and there are two facts which I am unable to square away. I'm interested in higher dimensional manifolds, but my question is ...
14
votes
1
answer
606
views
Eigenfunctions of the laplacian on $\mathbb{CP}^n$
I want to find explicit formulas for the eigenfunctions of the Laplacian on $\mathbb{CP}^n$ endowed with the Fubini Study metric.
For the first eigenvalue $\lambda_1 = 4(n+1)$, the eigenfunctions ...
18
votes
2
answers
2k
views
Eigenvalues of the Laplace-Beltrami operator on a compact Riemannnian manifold
Let $(M,g)$ be a compact Riemannian manifold, and let $\Delta_g$ be its Laplace-Beltrami operator. A "well-known fact" is that the eigenvalues of $\Delta_g$ have finite multiplicity and tend to ...
19
votes
1
answer
497
views
Do eigenfunctions determine the geometry of a manifold? If so, do finitely many suffice?
Let $X$ be a smooth, Riemannian manifold. It is known that the geometry of $X$ can be recovered from its heat kernel $k_{t}(x,y)$, using Varadhan's Lemma: $\displaystyle\lim_{t \to 0} t \log k_{t}(x,y)...
7
votes
0
answers
80
views
Eigenvalue lower bounds for manifold with positive Ricci curvature
For closed $n$-manifold with Ricci curvature $\ge (n-1)$, it is known that the first eigenvalue $\lambda_1\ge n$ with equality holds if and only if $M$ is isometric to the Euclidean sphere $S^n$. My ...
17
votes
3
answers
735
views
Does a spectral gap lift to covering spaces?
Let $M$ be a complete Riemannian manifold. Denote $\Delta_M\ge0$ the unique self-adjoint extension of the Laplace-Beltrami operator in $L^2(M)$ and $\sigma(\Delta_M)\subset [0,\infty)$ its spectrum. ...
3
votes
0
answers
108
views
Is the square root of curl^2-1/2 a natural (Dirac-)operator?
In current computations on a particular $3$-dimensional Riemannian manifold, a first order differential operator $D:\Gamma^\infty(TM,M)\to \Gamma^\infty(TM,M)$ acting on vector fiels shows up, with ...
7
votes
1
answer
274
views
Harmonic functions on $(M,g)$ closed, induce an embedding in Euclidean space
In Hajime Urakawa's monograph The Spectral Geometry of the Laplacian on page 41, we make an assumption that I can't quite justify on my own. The following is our setup:
Let $(M^n,g)$ be a closed ...
23
votes
1
answer
1k
views
Eigenvalues of Laplace operator
Assume that $(M,g)$ is a Riemannian manifold.
Is there any relation between the sequence of eigenvalues of Laplace operator acting on the space of smooth functions and the sequence of eigenvalues of ...
28
votes
6
answers
3k
views
Why is there no symplectic version of spectral geometry?
First, recall that on a Riemannian manifold $(M,g)$ the Laplace-Beltrami operator $\Delta_g:C^\infty(M)\to C^\infty(M)$ is defined as
$$
\Delta_g=\mathrm{div}_g\circ\mathrm{grad}_g,
$$
where the ...
6
votes
0
answers
179
views
Geometrically-explicit upper bound for on-diagonal heat kernel
Let $M$ be a compact Riemannian manifold, and $K(t;z,w)$ the heat kernel associated to the usual Laplace-Beltrami operator on functions. There are results of the form
$$K(t;z,z) \leq \frac{C_M}{f_z(t)...
1
vote
1
answer
171
views
Zero set of eigenfunction along a sub manifold
Let $M$ be a 2-dimensional closed Riemannian manifold and let $$\phi:M\rightarrow M$$ be an isometry with $\phi^2=Id_M$. Consider the fixed point set $$F:=\lbrace x\in M: \phi(x)=x \rbrace\subset M,$$ ...
10
votes
1
answer
1k
views
Multiplicity of Laplace eigenvalues
Disclaimer: This is a very heuristic question and I will be satisfied with heuristic insights, if rigorous and precise answers are not possible.
All the examples of closed surfaces (or higher ...
5
votes
1
answer
316
views
Convergence of Riemannian metrics spectra
Consider a one-parameter real analytic family of metrics $g_t$ on a compact manifold $M$ converging to a metric $g$ in $C^k$-norm, for some $k$. It is known that the Laplace spectrum of $g_t$ will ...
13
votes
1
answer
441
views
A question on a result of Colin de Verdière
Consider a compact connected surface $M$ of some genus $\gamma \geq 2$. A particular case of a famous result of Colin de Verdière (see Construction de laplaciens dont une partie finie du spectre est ...
3
votes
3
answers
235
views
Compact surfaces with arbitrary gaps in spectrum
Consider a sequence of positive numbers $a_n$. My question is, can we select a closed Riemann surface whose spectrum $\lambda_i$ satisfies the condition that $\lambda_{i + 1} - \lambda_i > a_i$? Of ...
10
votes
0
answers
270
views
Comparing spectra of Laplacian and Schrödinger operator
Let $M$ be a closed (compact without boundary) Riemannian manifold. Is there a body of results that compares the eigenvalues of the Laplace-Beltrami operator with that of Schrödinger operators $-\...
8
votes
1
answer
399
views
$C^k$ one-parameter family of metrics
Consider a smooth Riemannian manifold $M$ and a $C^k$ one-parameter family of Riemannian metrics $g_t$ on $M$. Here $k$ could be any integer, $k$ could be infinity, when the one-parameter family $g_t$ ...
11
votes
2
answers
959
views
Lower bound on the first eigenvalue of the Laplace-Beltrami on a closed Riemannian manifold
It has been proved by Li-Yau and Zhong-Yang that if $M$ is a closed Riemannian manifold of dimension $n$ with nonnegative Ricci curvature, then the first nonzero eigenvalue $\lambda_1(M)$ of the (...
3
votes
1
answer
220
views
structure of metrics on a compact manifold
is there a reference on the structure of the space of metrics on a compact manifold that induce a given measure $\mu $?
i have a given manifold $M$, a given measure $\mu$ with an everywhere positive $...
2
votes
0
answers
581
views
Estimates of eigenvalues of elliptic operators on compact manifolds
The classical Weyl law says that if $\Delta$ is the Laplace operator on functions on a compact Riemannian manifold $(M^n,g)$, $n>2$, then its $k$th eigenvalue satisfies the asymptotic formula
$$\...
14
votes
1
answer
1k
views
Spectrum of Laplacian in non-compact manifolds
What can be said about the spectrum of the Laplace-Beltrami operator on a non-compact, complete Riemannian manifold of finite volume? For example, is the point spectrum non-empty?
What would be a ...
21
votes
1
answer
922
views
Avoiding integers in the spectrum of the Laplacian of a Riemann surface
Let $\Sigma^2$ be an orientable compact surface of genus $gen(\Sigma)\geq2$, and denote by $\mathcal M(\Sigma)$ the moduli space of hyperbolic metrics on $\Sigma$, i.e., Riemannian metrics of constant ...
3
votes
1
answer
386
views
First eigenvalue of $\Delta$ on Kaehler manifold with $Ricci\ge k$.
Let $M$ be a Kaehler manifold of complex dimension $n$. Let $\Delta$ be the real Laplacian of the underline Riemannian manifold. Let's assume the Ricci curvature of $M$ satisfies $\text {Ric}\ge k>...
6
votes
2
answers
2k
views
Eigenvalues of Laplacian
What's the most natural way to establish the asymptotics of $\Delta$ on a compact Riemannian manifold $M$ of dimension $N$? The asymptotics should be
$$ \#\{v < A^2\} = \mathrm{const}\ast\mathrm{...