I am struggling with 1.11 exercise from the George Shakan "Discrete Fourier Transform".
Let $A \subset \mathbb{Z}/q\mathbb{Z}$ be any set not containing zero with $|A|>\sqrt2q^{5/8}$. Show that: $$(A+A).(A+A)+A.A+A.A = \mathbb{Z}/q\mathbb{Z}$$ with $$A+B=\{a+b: a\in A, b \in B\}$$ and $$A.B=\{ab: a\in A, b \in B\}$$
My main idea is prove that
$$|(A+A).(A+A)+A.A+A.A| \geq q$$
I tried with Garaev's Theorem:
Let $A \subset \mathbb{Z}/q\mathbb{Z}$ be any nonempty set not containing zero. Then $$\text{max}\{|A+A|,|A.A|\}\geq\text{min}\{\frac{\sqrt{q|A|}}{\sqrt2},\frac{|A|^2}{2\sqrt{q}}\}$$
So I'm thinking about two cases:
$|A+A| = \text{max}\{|A+A|,|A.A|\}$ and $|A.A| = \text{max}\{|A+A|,|A.A|\}$
With each, I estimate one part of the left hand side.
For example, with $|A+A| = \text{max}\{|A+A|,|A.A|\}$, I will estimate $|(A+A).(A+A)|$ and try to prove that $|(A+A).(A+A)| \geq q$
Using Garaev's, in this case I have
$$|A+A|\geq\text{min}\{\frac{\sqrt{q|A|}}{\sqrt2},\frac{|A|^2}{2\sqrt{q}}\}$$
Since $|A|>\sqrt2q^{5/8}$ as condition, then
$$|A+A|\geq\text{min}\{\frac{q^{13/16}}{2^{1/4}},q^{3/4}\}$$
With $q \geq 16, q^{3/4}$ is smaller, so I use it as min here, because the other case is finite.
But then, using the same techniques as the author, I can only prove that $|(A+A).(A+A)| \geq \frac{q}{2}$, which is not large enough and I can't estimate the rest part, too.
I'm wondering if my way of proving this is true or not. Hopefully, someone can help. Thanks in advance!
I wrote down my proof here:
https://drive.google.com/file/d/1cnHfJDlO3eYdskxoFb_sLytlhZSsybQg/view?usp=sharing
And this is George Shakan's paper:
https://gshakan.files.wordpress.com/2016/04/discretefouriertransform1.pdf