Consider the finite Boolean lattice $B_n$ of subsets of $[n]:=\lbrace 1,\dots,n\rbrace$ ordered by inclusion, let $1\leq j,k\leq n$ and consider the poset: $$A_{j,k}=\lbrace\emptyset\neq U\in B_n\mid (1,\dots,j)\nsubseteq U, (n-k,\dots,n)\nsubseteq U \rbrace$$ I want to compute the geometric realization for every $j,k$. Using the ideas of (Homotopy type of the geometric realization of a poset) I was able to prove the following:
If $j\leq n-k-1$ then: $$|A_{j,k}|=|((B_{j}\setminus\lbrace\hat{1}\rbrace)\times B_{n-j-k-1}\times (B_{k+1}\setminus\lbrace\hat{1}\rbrace))\setminus\lbrace\hat{0}\rbrace|=$$$$=|B_{j}\setminus\lbrace\hat{1},\hat{0}\rbrace|\ast| B_{n-j-k-1}\setminus\lbrace\hat{0}\rbrace|\ast |B_{k+1}\setminus\lbrace\hat{1},\hat{0}\rbrace|=$$$$=\mathbb{S}^{j-2}\ast | B_{n-j-k-1}\setminus\lbrace\hat{0}\rbrace|\ast \mathbb{S}^{k-1}=\mathbb{S}^{j+k-2}\ast | B_{n-j-k-1}\setminus\lbrace\hat{0}\rbrace|$$ Then, if $n=j+k+1~|A_{j,k}|=\mathbb{S}^{j+k-2}=\mathbb{S}^{n-3}$ and if $n\neq j+k+1~|A_{j,k}|$ is contractible.
But I don't know how we can prove it for $j\geq n-k$, since in this case the two sets $(1,\dots,j)$ and $(n-k,\dots,n)$ intersect, so I can't split $A_{j,k}$ into a direct product.
Any hint or help will be thanked.
Edit: Using the hints of @ChristopheLeuridan and @DavidWhite I did the following for the case $j\geq n-k$: First of all, we can decompose $A_{j,k}=A_{j,k}^1\cup A_{j,k}^2$ where: $$A_{j,k}^1=\lbrace\emptyset\neq U\in B_n\mid (n-k,\dots,j)\nsubseteq U\rbrace$$ $$A_{j,k}^2=\lbrace\emptyset\neq U\in B_n\mid (n-k,\dots,j)\subseteq U\text{ and }(1,\dots,n-k-1)\nsubseteq U,(j+1,\dots,n)\nsubseteq U\rbrace$$ We can compute the geometric realization of those two subposets: $$|A_{j,k}^1|=|((B_{j-n-k+1}\setminus\lbrace\hat{1}\rbrace)\times B_{2n-j+k-1})\setminus\lbrace\hat{0}\rbrace|=$$ $$=|B_{j-n-k+1}\setminus\lbrace\hat{0},\hat{1}\rbrace|\ast|B_{2n-j+k-1}\setminus\lbrace\hat{0}\rbrace|=\mathbb{S}^{j-n+k-3}\ast|B_{2n-j+k-1}\setminus\lbrace\hat{0}\rbrace|$$ Hence, if $2n-j+k-1=0~|A_{j,k}^1|=\mathbb{S}^{j-n+k-3}=\mathbb{S}^{n+2k-4}$ and if $2n-j+k-1\neq0~|A_{j,k}^1|$ is contractible, but it is easy to see that we can't have $2n-j+k-1=0$. On the other hand: $$|A_{j,k}^2|=|((B_{n-k-1}\setminus\lbrace\hat{1}\rbrace)\times(B_{n-j}\setminus\lbrace\hat{1}\rbrace))\setminus\lbrace \hat{0}\rbrace|=$$ $$=|B_{n-k-1}\setminus\lbrace\hat{0},\hat{1}\rbrace|\ast|B_{n-j}\setminus\lbrace\hat{0},\hat{1}\rbrace|=\mathbb{S}^{n-k-3}\ast\mathbb{S}^{n-j-2}=\mathbb{S}^{2n-k-j-4}$$ Hence, since those two posets are disjoint we have: $$|A_{j,k}|=|A_{j,k}^1|\cup|A_{j,k}^2|=\mathbb{S}^{2n-k-j-4}$$