I hope that the following space $P\mathbb Q^\omega$ is second-countable and quasi-Polish but not Polish.
Let $\mathbb Q$ be the field of rational numbners endowed with the discrete topology. Then its countable power $\mathbb Q^\omega$ is a Polish vector space over the field $\mathbb Q$. Let $P\mathbb Q^\omega$ be the projective space of $\mathbb Q$. So, $P\mathbb Q^\omega$ is the quotient space of $\mathbb Q^\omega_\circ=\mathbb Q^\omega\setminus\{0\}^\omega$ by the equivalence relation $\sim$ defined as $x\sim y$ iff $\mathbb Qx=\mathbb Qy$. Is is easy to see that the quotient map $q:\mathbb Q^\omega_\circ\to P\mathbb Q^\omega$ is open, which implies that the space $P\mathbb Q^\omega$ is second-countable. It is known that the space $P\mathbb Q^\omega$ is Hausdorff but not Urysohn (moreover, $P\mathbb Q^\omega$ is superconnected in the sense that for any nonempty open sets $U_1,\dots,U_n$ in $P\mathbb Q^\omega$ the intersection $\bar U_1\cap\dots\cap\bar U_n$ is not empty). Therefore, $P\mathbb Q^\omega$ is not metrizable and hence not Polish.
Now we show that $P\mathbb Q^\omega$ is quasi-Polish. Let $\mathbb Q^{<\omega}_\circ=\bigcup_{n\in\omega}(\mathbb Q^n\setminus\{0\}^n)$ be the countable set of all finite nonzero sequences of rational numbers and let $\{s_n\}_{n\in\omega}=\mathbb Q^{<\omega}_\circ$ be an enumeration of the set $\mathbb Q^{<\omega}_\circ$. For every sequence $s\in \mathbb Q^{<\omega}_\circ$ let $\ell(s)$ be its length and ${\uparrow}s=\{x\in\mathbb Q^\omega_\circ:x{\restriction}_{\ell(s)}=s\}$.
Let $q[{\uparrow}s]$ be the image of ${\uparrow}s$ under the quotient map $q:\mathbb Q^\omega_\circ\to P\mathbb Q^\omega$. It follows that $\{q[{\uparrow}s]:s\in\mathbb Q^\omega_\circ\}$ is a countable base of the topology of $P\mathbb Q^\omega$.
For every $n\in\omega$, consider the quasi-pseudometric
$d_n:P\mathbb Q^\omega\times P\mathbb Q^\omega\to\{0,1\}$ defined by $d_n{-1}(1)=q[{\uparrow}s_n]\times (P\mathbb Q^\omega\setminus q[{\uparrow}s_n])$.
Finally consider the quasi-metric $d:P\mathbb Q^\omega\times P\mathbb Q^\omega\to[0,1]$ defined by $$d=\sum_{n\in\omega}\tfrac1{2^{n+1}}d_n.$$
I hope that the quasi-metric $d$ witnesses that $P\mathbb Q^\omega$ is a quasi-Polish space.