Obviously there exists a list of the finite simple groups, but why should it be a nice list, one that you can write down?
Solomon's AMS article goes some way toward a historical / technical explanation of how work on the proof proceeded. But, though I would like someday to attain some appreciation of the mathematics used in the proof, I'm hoping that there is some plausibility argument out there to convince the non-expert (like me!) that a classification ought to be feasible at all. A few possible lines of thought come to mind:
- Groups have very simple axioms. So perhaps they should be easy to classify. This seems like not a very convincing argument, but perhaps there is some way to make it more convincing.
- Lie groups have a nice classification, and many tools are available for their study and that of their finite analogues. And in fact, it turns out that almost all finite simple nonabelian groups fall under this heading. Is it somehow clear a priori that these should be essentially all the examples? What sort of plausibility arguments might lead one to believe this?
- If there are not currently any good heuristic arguments to convince a non-expert that a classification should be possible, then will this always be the case? Or will we someday understand things better...
There is probably a model-theoretic way to formalize this question. As a total guess, it might be something along the lines of "Do the finite simple groups have a finitely axiomatizable first-order theory?", except probably "finitely axiomatizable first-order theory" doesn't really capture the idea of a classification. If someone could point me towards how to formalize the idea of "classifiable", or "feasibly classifiable", I'd appreciate it.FSGs up to order SEFSGs up to order MO
EDIT: To clarify, what I'd like is an argument that finite simple groups should be classifiable which does not boil down to an outline of the actual classification proof. Joseph O'Rourke asked on StackExchange Why are there only a finite number of sporadic simple groups?. There, Jack Schmidt pointed out the work of Michler towards a uniform construction of the sporadic groups, as reviewed here. Following the citation trail, one finds a 1976 lecture by Brauer in which he says that he's not sure whether there are finitely many or infinitely many sporadic groups, and which he concludes with some historical notes that describe a back-and-forth over the decades: at times it was believed there were infinitely many sporadic groups, and at times that there were only finitely many. So it appears that the answer to my question is no-- at least up to 1976, there was no evidence apart from the classification program as a whole to suggest that there should be only finitely many sporadic groups.
So I'd like to refocus my question: are such lines of argument developing today, or likely to develop in the (near? distant?) future? And has there been further clarification of what exactly is meant by a classification? (Is this too drastic a change? should I start a new thread?)