Let $e_{1}$ and $e_{2}$ be involutions in the algebraic group $G=\operatorname{PGL}_{n}(\mathbb{C})$. Do we have $$C_{G}(\langle e_{1},e_{2}\rangle)^{\circ} = C_{G}(e_{1})^{\circ}\cap C_{G}(e_{2})^{\circ}.$$ It's obvious $C_{G}(\langle e_{1},e_{2}\rangle)^{\circ} \leqslant C_{G}(e_{1})^{\circ}\cap C_{G}(e_{2})^{\circ}.$ If yes, can it be generalised to two elementary abelian $2$-subgroups $E_{1}, E_{2}$.
Here $H^{\circ}$ denotes the identity component of the group $H$.
I can only see this through some examples. For instance, in $G=\operatorname{PGL}_{4}(\mathbb{C})$, let $$ x=\left[ \begin{array}{cc} -1 & 0 & 0 & 0\\ 0 & 1& 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 \end{array} \right],f= \left[ \begin{array}{cc} 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array} \right].$$ Then $$C_{G}(x) = \left[ \begin{array}{cc} a_{1} & 0 & a_{3} & 0\\ 0 & b_{2} & 0 & b_{4}\\ c_{1} & 0 & c_{3} & 0\\ 0 & d_{2} & 0 & d_{4} \end{array} \right] \sqcup f\left[ \begin{array}{cc} a_{1} & 0 & a_{3} & 0\\ 0 & b_{2} & 0 & b_{4}\\ c_{1} & 0 & c_{3} & 0\\ 0 & d_{2} & 0 & d_{4} \end{array} \right].$$
Let $$ y=\left[ \begin{array}{cc} 1 & 0 & 0 & 0\\ 0 & -1& 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array} \right]. \mbox{So } C_{G}(y) = \left[ \begin{array}{cc} u_{1} & 0 & u_{3} & u_{4}\\ 0 & v_{2} & 0 & 0\\ s_{1} & 0 & s_{3} & s_{4}\\ t_{1} & 0 & t_{3} & t_{4} \end{array} \right].$$ So $C_{G}(\langle x,y\rangle)^{\circ} = \left[ \begin{array}{cc} * & 0 & * & 0\\ 0 & * & 0 & 0\\ * & 0 & * & 0\\ 0 & 0 & 0 & * \end{array} \right]\cong A_{1}T_{2}$ which is, indeed, the intersection of the identity components of the two centralisers.