Let $\omega$ denote the set of natural numbers, let $\text{Sym}(\omega)$ be the collection of bijections $\psi:\omega\to\omega$, and let $\text{(fin)}$ be the set of members of $\text{Sym}(\omega)$ having finite support. Formally, $$\text{(fin)} = \{\psi\in\text{Sym}(\omega): (\exists k\in\omega)(\forall i\in\omega\setminus k)\psi(i) = i\}.$$
Is $\text{Sym}(\omega)/\text{(fin)}$ isomorphic to a subgroup of $\text{Sym}(\omega)$?