$\newcommand{\R}{\mathbb R}\newcommand\ep\varepsilon\newcommand{\de}{\delta}$Let us prove the following weaker statement, hoping it would help to find a complete solution of the posted problem.
Proposition 1: Suppose that a function $f\in C^\infty(\R)$ is such that
\begin{equation*}
|f^{(k)}|\le2^{-c_k 2^k} \tag{1}\label{1}
\end{equation*}
for all $k=0,1,\dots$, where $c_k\to\infty$ (as $k\to\infty$). Then $f$ is constant.
The proof of Proposition 1 is based on
Lemma 1: Suppose that $g\in C^2(\R)$, $|g|\le B\in(0,\infty)$, and $|g'(a)|\ge C\in(0,\infty)$ for some real $a$. Then
\begin{equation*}
|g''(x)|\ge D:=\frac{C^2}{2B}
\end{equation*}
for some real $x$.
Proof of Lemma 1: To obtain a contradiction, suppose that $|g''|<D$.
Using the vertical and/or horizontal reflections of the graph of $g$, without loss of generality (wlog) assume that $g(a)\ge0$ and $g'(a)\ge0$, so that $g'(a)\ge C>0$. So, for any real $b>0$,
\begin{equation*}
g(a+b)>g(a)+g'(a)b-Db^2/2\ge0+Cb-Db^2/2=B
\end{equation*}
if $b=2B/C$, which contradicts condition $|g|\le B$. $\quad\Box$
Proof of Proposition 1: To obtain a contradiction, suppose that $\ep_1:=|f'(a_1)|>0$ for some real $a_1$. By \eqref{1}, $|f^{(k)}|\le B$ for some real $B\ge\ep_1$ and all $k=0,1,\dots$. So, by Lemma 1,
\begin{equation*}
|f''(a_2)|\ge\ep_2:=\frac{\ep_1^2}{2B}
\end{equation*}
for some real $a_2$. Continuing so, we get a sequence $(\ep_1,\ep_2,\dots)$ of positive real numbers and a sequence $(a_1,a_2,\dots)$ of real numbers such that for all $k=1,2,\dots$
\begin{equation*}
|f^{(k)}(a_k)|\ge\ep_k:=\frac{\ep_{k-1}^2}{2B}
\end{equation*}
and hence, with $c:=\frac12\log_2\frac{2B}{\ep_1}\in(0,\infty)$,
\begin{equation*}
|f^{(k)}(a_k)|\ge\ep_k=2^{-c2^k},
\end{equation*}
which contradicts \eqref{1}. $\quad\Box$