All Questions

Filter by
Sorted by
Tagged with
12 votes
3 answers
1k views

A K3 over $P^1$ with six singular $A_1$- fibers?

Hirzebruch, in the paper 'Arrangements of Lines and Algebraic Surfaces' constructs a special $K3$ surface out of a 'complete quadrilateral' in $CP^2$. A complete quadritlateral consists of 4 ...
Richard Montgomery's user avatar
12 votes
1 answer
674 views

Dodecahedral K3?

In pondering this MO question and in particularly its 1st answer, and answers to this one recently posed, I realized there ought to be a dodecahedral K3 surface $X$. This $X$ would fiber as an ...
Richard Montgomery's user avatar
9 votes
2 answers
727 views

Do singular fibers determine the elliptic K3 surface, generically?

General elliptic K3 surfaces. Consider K3 surfaces of Picard rank two with Neron-Severi lattice isomorphic to $$\left[\begin{array}{cc} 2d & t \\ t & 0 \end{array}\right]$$ for some positive ...
Evgeny Shinder's user avatar
7 votes
1 answer
548 views

Discriminant locus of elliptic K3 surfaces

Given a complex elliptic K3 surface $\pi\colon X\rightarrow \mathbb P^1$, its discriminant locus is the divisor $$D = \sum_{i = 1}^s n_i P_i$$ on $\mathbb P^1$ such that $n_i$ is equal to the Euler-...
Davide Cesare Veniani's user avatar
6 votes
0 answers
198 views

Produce supersingular K3 from rational elliptic surfaces

Given a rational elliptic surface $R \to \Bbb P^1$, is there a way to know if there exists a supersingular K3 surface that arises as a base curve change $S=R\times_{\Bbb P^1} \Bbb P^1 \to \Bbb P^1$, ...
Vinicius M.'s user avatar
5 votes
1 answer
297 views

K3 surface with $D_{14}$ singular fiber

Let $X$ be an elliptic K3 surface with $D_{14}$ singular fiber. Do you know an explicit equation for such $X$? Also, how many disjoint sections such fibration admits? Any reference would be greatly ...
guest2014's user avatar
4 votes
0 answers
86 views

Is there a way to calculate the Picard $\mathbb{F}_q$-number of an (rational or K3) elliptic surface?

Consider a finite field $\mathbb{F}_{q}$ and an elliptic surface $$ \mathcal{E}\!: y^2 + a_1(t)xy + a_3(t)y = x^3 + a_2(t)x^2 + a_4(t)x + a_6, $$ where $a_i(t) \in \mathbb{F}_{q}[t]$. Is there a way ...
Dimitri Koshelev's user avatar
4 votes
0 answers
279 views

What is the Artin invariant of an elliptic supersingular K3 surface?

Let $X$ be a supersingular K3 surface over an algebraically closed field $k$ of positive characteristic $\!p$. Artin proved in the paper https://eudml.org/doc/81948 that the determinant $\mathrm{disc}(...
Dimitri Koshelev's user avatar
4 votes
0 answers
540 views

Singular fibers of an elliptic fibered K3 surface.

Let $f:S\rightarrow \mathbb{P}^1$ be an elliptic K3 surface. Assume that $\mathrm{Pic}(S)\cong U$, where $U$ stands for the hyperbolic lattice. I think that the elliptic fibration has only singular ...
Charls's user avatar
  • 41
3 votes
1 answer
309 views

Spectral sequence associated to elliptic fibration degenerates?

Let $\phi:S\rightarrow \mathbb{CP}^1$ be an elliptic fibration of a K3 surface. When is the Leray spectral sequence associated to the fibration $E_2$-degenerate? Are there any good criteria for the $...
Hua's user avatar
  • 31
3 votes
1 answer
368 views

Mordell–Weil rank of some elliptic $K3$ surface

Consider a finite field $\mathbb{F}_q$ such that $q \equiv 1 \pmod3$ (i.e., $\omega \mathrel{:=} \sqrt[3]{1} \in \mathbb{F}_q$ for $\omega \neq 1$) and an element $b \in (\mathbb{F}_q^*)^2 \setminus (\...
Dimitri Koshelev's user avatar
3 votes
0 answers
541 views

The Jacobian surface of an elliptic surface

Let $\mathcal{X}$ be an elliptic surface over $\mathbb{P}^1$ without a section and let $\mathcal{J}$ be an elliptic surface over $\mathbb{P}^1$ with a section. Assume we have the commutative diagram \...
Dimitri Koshelev's user avatar
3 votes
0 answers
153 views

Topology of K3 as a sum of two abelian fibrations.

Let $E$ be a blow-up of $\mathbb{P}^2$ at 9-points in the bases locus of a pencil of elliptic curves (A $T^2$ fibration over $S^2$). K3 surfaces is obtained by removing a fiber from two copies of $E$ ...
Mohammad Farajzadeh-Tehrani's user avatar