Questions tagged [metric-spaces]
A metric space is a pair $(X,d)$, where $X$ is a set and $d:X \times X \to \mathbb{R}$ satisfies the following conditions for all $x,y,z \in X$. (Symmetry) $d(x,y)=d(y,x)$. (Identity of Indiscernibles) $d(x,y)=0$ if and only if $x=y$. (Triangle Inequality) $d(x,y)+d(y,z) \geq d(x,z)$.