Let $\mathcal C$ be a finite tensor category, and $\mathcal M$ a finite left $\mathcal C$-module category. By a result of P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik (http://www-math.mit.edu/~etingof/tenscat1.pdf , Thm. 2.11.6), there is an algebra object $A \in \mathcal C$ and an equivalence of left $\mathcal C$-module categories $\mathcal M \simeq \mathsf{Mod}\mbox{-}A(\mathcal C)$, where $\mathsf{Mod}\mbox{-}A(\mathcal C)$ is the category of right $A$-modules internal in $\mathcal C$. There is a similar result for right $\mathcal C$-module categories.
Now assume that $\mathcal M$ is a $\mathcal C$-$\mathcal C$-bimodule category, e.g. $\mathcal M$ is braided (then there is a canonical right/left $\mathcal{C}$-module structure if $\mathcal M$ was a left/right $\mathcal{C}$-module). (Of course, one can also consider the more general case of a $\mathcal C$-$\mathcal D$-bimodule category.) What is the corresponding result to the one above? Something straight-forward would be the following: If $\mathcal M \simeq \mathsf{Mod}\mbox{-}A(\mathcal C)$ as left module categories and $\mathcal M \simeq B\mbox{-}\mathsf{Mod}(\mathcal C)$ as right module categories, then $\mathcal M \simeq B\mbox{-}\mathsf{Mod}\mbox{-}A(\mathcal C)$ as bimodule categories, where $B\mbox{-}\mathsf{Mod}\mbox{-}A(\mathcal C)$ is the category of $B$-$A$-bimodules in $\mathcal C$. If this is correct, how can it be proven? Is there already a paper covering this?
(By results of Douglas, Schommer-Pries and Snyder, it at least follows that $\mathcal M \boxtimes_{\mathcal C} \mathcal M \simeq B\mbox{-}\mathsf{Mod}\mbox{-}A(\mathcal C)$ as $\mathcal C$-bimodule categories. Does this already show that my claim above does not hold?)
Edit: Rephrasing my question, how can the equivalence $\mathcal M \simeq \mathsf{Mod}\mbox{-}A(\mathcal C)$ be made into an equivalence of bimodule categories, if $\mathcal M$ is a bimodule category?