All Questions
Tagged with gn.general-topology pr.probability
7
questions
4
votes
1
answer
1k
views
Quotients of standard Borel spaces
Let $X$ and $Y$ be standard Borel spaces: topological spaces homeomorphic to Borel subsets of complete metric spaces. Given a surjective Borel map $f:X\to Y$, we get an equivalence relation $\sim_f\...
17
votes
4
answers
1k
views
Continuity on a measure one set versus measure one set of points of continuity
In short: If $f$ is continuous on a measure one set, is there a function $g=f$ a.e. such that a.e. point is a point of continuity of $g$?
Now more carefully, with some notation: Suppose $(X, d_X)$ ...
13
votes
1
answer
735
views
Idempotent measures on the free binary system?
Let $(S,*)$ be the free (non associative) binary system on one generator (so $S$ is just the set of terms in $*$ and $1$). There is an extension of $*$ to the space $P(S)$ of finitely additive ...
9
votes
1
answer
4k
views
What are some characterizations of the strong and total variation convergence topologies on measures?
I asked this question on StackExchange a few days ago but didn't get any response, so I thought I would try here.
The Wikipedia article on convergence of measures defines three kinds of convergence: ...
7
votes
1
answer
230
views
Comparison of several topologies for probability measures
Let $X$ be a compact metric space and denote $\mathcal M(X)$ the set of probability measures on $X$. For $\mu\in\mathcal M(X)$ we write $\operatorname{supp} \mu$ for the support of $\mu$. As is well ...
4
votes
0
answers
94
views
Is the range of a probability-valued random variable with the variation topology (almost) separable?
Let $X$ and $Y$ be uncountable Polish spaces, $\Delta(Y)$ be the space of Borel probability measures on $Y$ endowed with the Borel $\sigma$-algebra induced by the variation distance, and let $g:X\to \...
-1
votes
2
answers
341
views
$X$ is Polish and $N$ is countable. Is $N^X$ Polish? [closed]
$X$ is a separable, completely metrizable topological space equipped with its sigma algebra of Borel sets. $N$ is a countable space.
$X^N$ is the collection of all mappings from $N$ to $X$. It is ...