All Questions
Tagged with sp.spectral-theory real-analysis
70
questions
3
votes
2
answers
179
views
Domain of spectral fractional Laplacian
Let $(M,g)$ be a complete Riemannian manifold with Laplacian $\Delta:C^{\infty}_{c}(M)\to C^{\infty}_{c}(M)$ (think of $\mathbb{R}^{d}$ if you wish). This operator is essentially self-adjoint in $L^{2}...
1
vote
1
answer
111
views
Sobolev-type estimate for irrational winding on a torus
Let $\mathbb{T} = \{ (x, y) \in \mathbb{R}^2 \}/_{x \mapsto x + 1, y \mapsto y + 1}$ be a real 2-torus. Let $\mathscr{C}^{\infty}_0(\mathbb{T})$ be the subset of $\mathscr{C}^{\infty}(\mathbb{T})$ of ...
3
votes
0
answers
108
views
Leibniz rule bound for the inverse of the Laplacian?
Let $f, g \in L^2[\mathbb{T}^2]$ be real-valued functions without zero modes. That is, $\int_{\mathbb{T}^2}f=\int_{\mathbb{T}^2}g=0$. Here, ${\mathbb{T}^2}$ is the $2$-dimensional torus $[\mathbb{R}/\...
2
votes
0
answers
72
views
On Dirichlet eigenfunctions of a domain
Given any bounded domain $\Omega\subset \mathbb R^n$, $n\geq 2$, with a Lipschitz boundary, let $\{(\lambda_k,\phi_k)\}_{k\in \mathbb N}$ be the Dirichlet eigenvalues and eigenfunctions of $-\Delta$ ...
4
votes
1
answer
139
views
Existence of a domain with simple Dirichlet eigenvalues
Let $g$ be a smooth Riemannian metric on $\mathbb R^3$ that coincides with the Euclidean metric outside a compact set $K$. Does there exist some domain $\Omega$ with smooth boundary such that $K \...
3
votes
0
answers
129
views
Is there a space of smooth functions dense in the domain of Coulomb-like potentials in dimension two?
Let $V : \mathbb{R}^2 \to \mathbb{R}$ be compactly supported, bounded away from the origin, and obey
$$ |V(x)| \lesssim r^{-\delta_0}, \qquad 0 < |x| \le 1, \qquad r : =|x|,$$
for some $0 < \...
0
votes
1
answer
68
views
Orthogonality to a one parameter family of eigenfunctions
Let $\rho>0$ be a smooth realvalued function such that $\rho=1$ outside the unit interval $(-1,1)$. For each $t>0$, let us denote by $\{\lambda_n(t)\}_{n=1}^{\infty}$ and $\{\phi_n(t;x)\}_{n=1}^{...
0
votes
1
answer
137
views
Determine if an integral expression is in $L^2(\mathbb{R})$
Note: This is a simplified version of the following question. I did not get a full response and realized can make it simpler to have my main interrogation answered. I decided to write it as a ...
0
votes
1
answer
109
views
Existence of an eigenpair for d-bar operator in the unit disck
Let $\overline{\partial}=\frac{1}{2}(\partial_{x}+\textrm{i} \,\partial_y)$ and let $D$ be the unit disc in the complex plane. For each $\lambda \in \mathbb C$, consider the problem:
$$ \overline{\...
1
vote
1
answer
216
views
Monotonicity of eigenvalues II
In a previous question here, I asked the question below for block matrices and received an answer showing the question is true if $\mathcal B$ is hermitian and false, in general if $\mathcal B$ is non-...
6
votes
1
answer
524
views
Monotonicity of eigenvalues
We consider block matrices
$$\mathcal A = \begin{pmatrix} 0 & A\\A^* & 0 \end{pmatrix}$$ and
$$\mathcal B = \begin{pmatrix} 0 & B\\C & 0 \end{pmatrix}.$$
Then we define the new matrix
$...
2
votes
0
answers
78
views
Proving an eigenvalue bound without resorting to Weyl's law
Suppose $(M,g)$ is a smooth compact Riemannian manifold of dimension $n\geq 2$ with smooth boundary and denote by $\{\phi_k,\lambda_k\}_{k\in \mathbb N}$ its Dirihclet spectral decomposition for the ...
2
votes
0
answers
63
views
Weyl's law and eigenfunction bounds for weighted Laplace-Beltrami operator
I would appreciate any answers or even references for the following problem.
Let $(M,g)$ be a complete smooth Riemannian manifold with an asymptotically Euclidean metric (let's even say that the ...
6
votes
1
answer
320
views
Criteria for operators to have infinitely many eigenvalues
Normal compact linear operators on Hilbert spaces have infinitely many (counting multiplicities) eigenvalues by the spectral theorem.
For non-normal operators this no longer has to be true.
There ...
4
votes
1
answer
184
views
Spectrum Cauchy-Euler operator
A Cauchy-Euler operator is an operator that leaves homogeneous polynomial of a certain degree invariant, named after the Cauchy-Euler differential equations
We consider the operator
$$(Lf)(x) = \...
1
vote
1
answer
71
views
A property for generic pairs of functions and metrics
Let $M$ be a compact smooth manifold with a smooth boundary. Given a smooth Riemannian metric $g$ on $M$, we denote by $\{\phi_k\}_{k=1}^{\infty}$ an $L^2(M)$--orthonormal basis consisting of ...
1
vote
1
answer
192
views
Eigenvalues of operator
In the question here
the author asks for the eigenvalues of an operator
$$A = \begin{pmatrix} x & -\partial_x \\ \partial_x & -x \end{pmatrix}.$$
Here I would like to ask if one can extend ...
3
votes
1
answer
154
views
Explicit eigenvalues of matrix?
Consider the matrix-valued operator
$$A = \begin{pmatrix} x & -\partial_x \\ \partial_x & -x \end{pmatrix}.$$
I am wondering if one can explicitly compute the eigenfunctions of that object on ...
7
votes
1
answer
168
views
Are $\log(\sigma(A(z))$ subharmonic functions?
Let $A$ be a matrix-valued entire function. It is then well-known that $\log \Vert A(z)\Vert$ is subharmonic. In particular, the operator norm is just the largest singular value of $A$.
Is it ...
6
votes
0
answers
144
views
Gap between consecutive Dirichlet eigenvalues
Suppose $\Omega \subset \mathbb R^2$ is a domain with a Lipschitz boundary and let $\{\lambda_k\}_{k=0}^n$ be the eigenvalues for the Laplacian operator on $\Omega$, that is to say
$$ -\Delta \phi_k = ...
4
votes
1
answer
346
views
Existence of periodic solution to ODE
We shall consider the matrix-valued differential operator
$$(L u)(x) :=u'(x) - \begin{pmatrix} 0 & \sin(2\pi x-\frac{\pi}{6})\\ - 2\sin(2\pi x+\frac{\pi}{6}) & 0 \end{pmatrix} u(x).$$
This is ...
5
votes
1
answer
436
views
Convergence of discrete Laplacian to continuous one
I make the following observation:
Let $\Delta^{(n)}$ be the discrete Laplacian on $\mathbb{C}^n$ (ie the $n\times n $ matrix with diagonal $-2$ and upper/lower diagonal $1$.)
This one has eigenvalues ...
0
votes
0
answers
67
views
Multiplication of a Riesz basis
Let ${(\phi_n(.),\psi_n(.))}_{n\geq 1}$ be a Riesz basis in $H^1_0(0,1) \times L^2(0,1)$.
My question is the following: If we multiply the basis by the matrix $e^{Mx}$, $x \in (0,1)$ where $M$ is a ...
6
votes
1
answer
217
views
Perron-Frobenius and Markov chains on countable state space
The following question naturally arises in the theory of Markov chains with countable state space to which I would be curious to know the answer:
Let $A:\ell^1 \rightarrow \ell^1$ be a contraction, i....
6
votes
0
answers
106
views
Eigenvalues of splitting scheme
In numerical analysis it is common to approximate a solution to a PDE
$$u'(t) = (A+B) u(t), \quad u(0)=u_0$$
which is just given by $e^{t(A+B)}u_0$ by the splitting $e^{tB/2} e^{tA} e^{tB/2}u_0.$ Here,...
3
votes
0
answers
313
views
Heat equation damps backward heat equation?
In a previous question on mathoverflow, I was wondering about the following:
Let $\Delta$ be the Laplacian on some compact interval $I$ of the real line with let's say Dirichlet boundary conditions. ...
4
votes
1
answer
184
views
Mapping properties of backward and forward heat equation
In a previous question on mathoverflow, I asked about the following:
Let $\Delta$ be the Laplacian on some compact interval $I$ of the real line with let's say Dirichlet boundary conditions.
The ...
2
votes
1
answer
214
views
Diagonalise self-adjoint operator explicitly?
Consider the linear constant coefficient differential operator
$P$ on the Hilbert space $L^2([0,1]^2;\mathbb C^2)$
$$P= \begin{pmatrix} D_{z}+c & a \\ b & D_{z}+c \end{pmatrix}$$
where $D_z=-...
3
votes
1
answer
111
views
Approximation of vectors using self-adjoint operators
Let $T$ be an unbounded self-adjoint operator.
Does there exist, for any $\varphi$ normalized in the Hilbert space, a constant $k(\varphi)>0$ and a sequence of normalized $(\varphi_n)$ such that $$...
4
votes
1
answer
153
views
Elliptic estimates for self-adjoint operators
Let $A$ be a symmetric matrix in $\mathbb R^n$ such that $A$ is positive definite and hence satisfies $0< \lambda \le A \le \Lambda < \infty.$
Let $T$ be a densely defined and closed operator ...
2
votes
0
answers
82
views
First Dirichlet eigenvalue below second Neumann eigenvalue?
Let $\Omega$ be a bounded domain in $\mathbb R^n $ with smooth boundary.
I was wondering if there exist any known conditions on $\Omega$ such that the 1st Dirichlet eigenvalue of the (positive) ...
1
vote
1
answer
1k
views
Positive matrix and diagonally dominant
There is a well-known criterion to check whether a matrix is positive definite which asks to check that a matrix $A$ is
a) hermitian
b) has only positive diagonal entries and
c) is diagonally ...
2
votes
3
answers
210
views
Equivalence of operators
let $T$ and $S$ be positive definite (thus self-adjoint) operators on a Hilbert space.
I am wondering whether we have equivalence of operators
$$ c(T+S) \le \sqrt{T^2+S^2} \le C(T+S)$$
for some ...
5
votes
1
answer
143
views
Existence of operator with certain properties
I am curious to know the answer to the following question:
Does there exist a continuous linear operator on some Banach space $X$ such that $\Vert T \Vert=1$, and $\sigma(T)\supset \{1\}$ is isolated ...
2
votes
2
answers
501
views
Graph with complex eigenvalues
The question I am wondering about is:
Can the discrete Laplacian have complex eigenvalues on a graph?
Clearly, there are two cases where it is obvious that this is impossible.
1.) The graph is ...
4
votes
2
answers
701
views
Decay of eigenfunctions for Laplacian
Consider the discrete second derivative with Dirichlet boundary conditions on $\mathbb C^n$.
Its eigendecomposition is fully known:
see wikipedia
It seems like the largest eigenvalue $\lambda_1$ is ...
22
votes
5
answers
1k
views
Rigorous justification for this formal solution to $f(x+1)+f(x)=g(x)$
Let $g\in C(\Bbb R)$ be given, we want to find a solution $f\in C(\Bbb R)$ of the equation
$$
f(x+1) + f(x) = g(x).
$$
We may rewrite the equation using the right-shift operator $(Tf)(x) = f(x+1)$...
3
votes
1
answer
341
views
Oscillatory integrals
Consider the integrals
$$I_n(\zeta,\epsilon)=\int_{-\zeta}^\zeta \left|(t-i\epsilon)^{-n}-(t+i\epsilon)^{-n}\right|\,dt$$
I would like to know the asymptotic behavior of $I_n(\zeta,\epsilon)$ for ...
11
votes
2
answers
527
views
Smoothness of finite-dimensional functional calculus
Assume that $f:\mathbb R\to\mathbb R$ is continuous.
Given a real symmetric matrix $A\in\text{Sym}(n)$, we can define $f(A)$ by applying $f$ to its spectrum. More explicitly,
$$ f(A):=\sum f(\lambda)...
3
votes
0
answers
155
views
Perturbation theory compact operator
Let $K$ be a compact self-adjoint operator on a Hilbert space $H$ such that for some normalized $x \in H$ and $\lambda \in \mathbb C:$
$\Vert Kx-\lambda x \Vert \le \varepsilon.$
It is well-known ...
3
votes
1
answer
201
views
Eigenvalue estimates for operator perturbations
I edited the question to a general mathematical question, since I found the answer in Carlo Beenakker's reference and think that my initial question was mathematically misleading.
What was behind ...
8
votes
2
answers
315
views
Matrix rescaling increases lowest eigenvalue?
Consider the set $\mathbf{N}:=\left\{1,2,....,N \right\}$ and let $$\mathbf M:=\left\{ M_i; M_i \subset \mathbf N \text{ such that } \left\lvert M_i \right\rvert=2 \text{ or }\left\lvert M_i \right\...
2
votes
0
answers
189
views
Absence of fixed points
Let $f$ be an arbitrary function in $L^2(0,\infty)$ and consider the function
$$(g_f)(y) = \frac{1}{y-x_0} \int_{0}^{\infty} f(x) \frac{xy}{(x^2+y^2+1)} \ dx$$
where $x_0$ is an arbitrary but fixed ...
2
votes
1
answer
479
views
Spectrum of magnetic Laplacian
Consider the discrete magnetic Laplacian on $\mathbb Z^2.$
$$(\Delta_{\alpha,\lambda}\psi)(n_1,n_2) = e^{-i \pi \alpha n_2} \psi(n_1+1,n_2) + e^{i\pi \alpha n_2} \psi(n_1-1,n_2) + \lambda \left(e^{i ...
2
votes
0
answers
56
views
Absolute continuity of DOS measure for Schrödinger operators
Kotani theory gives roughly that for ergodic operators there is a certain equivalence between absolutely continuous spectrum and an absolutely continuous density of states measure.
I would like to ...
2
votes
0
answers
77
views
Generalization of supersymmetry to dimension 3
in two dimensions there is a simple trick to study the spectrum of operators of the form
$$\textbf{A}:=\left( \begin{matrix}0 && A^* \\ A && 0 \end{matrix}\right)$$
The trick is to ...
5
votes
1
answer
863
views
The spectrum of the discrete Laplacian
Consider a connected (we define connected components by defining the set of vertices where every vertex has one neighbour) sublattice $V$ of the square lattice $V \subset\mathbb{Z}^2.$
On this we ...
0
votes
1
answer
177
views
Meromorphic solutions to Legendre's equation
I just saw the following question that was asked yesterday on math overflow on meromorphic solutions to ODEs
Although, I understand the answers and comments to the questions, I did not understand how ...
2
votes
1
answer
262
views
Laplacian dissipative?
is it true that the Laplacian $\Delta:=\frac{d^2}{dx^2}$ on $(0,1)$ with Neumann boundary conditions is dissipative on $C[0,1]?$
For this we have to show that there is for any $x \in D(\Delta)$a $x' \...
4
votes
1
answer
309
views
Dissipative operator on Banach spaces
An operator $A$ is called dissipative if for all $x \in D(A)$ and $\lambda >0$
$$ \left\lVert (A-\lambda)x \right\rVert \ge \lambda \left\lVert x \right\rVert.$$
On a Hilbert space this is ...