6
$\begingroup$

My question is essentially related to this post, but let me formulate it again. Let $f:S \rightarrow \mathbb{P}^1$ be an elliptic fibration, then this can be a SLAG fibration with respect to another complex structure on $S$, say $S_K$. Since the compactified dual fibration $f^\vee$ is naturally identified with $f$ (see the above post, especially Gross's answer), it seems the mirror manifold of $S_K$ is again $S_K$. However, this does not seem compatible with mirror symmetry of K3 surfaces (in the sense of Dolgachev for example).

Can anyone clarify the problem? A possible mistake is that the dual fibration $f^\vee$ cannot be identified with $f$...

$\endgroup$
1
  • 1
    $\begingroup$ as far as I know, Dolgachev's version of mirror symmetry is not compatible with the physicists' one $\endgroup$ Jun 11, 2014 at 12:28

1 Answer 1

3
$\begingroup$

My answer in the link given above is purely at a topological level, saying that if we have a $T^2$-fibration, the dual is canonically homeomorphic. However, $T$-duality should also be viewed as exchanging complex and symplectic structure . For K3 surfaces, this can be described in terms of forms, and I sketched this in an answer to a different question, Mirror symmetry for hyperkahler manifold.

Dolgachev's mirror symmetry can be viewed as a subset of physicist's mirror symmetry. The key paper explaining mirror symmetry for K3 surfaces from a physics point of view is a paper of Aspinwall and Morrison, http://arxiv.org/abs/hep-th/9404151. There is a Teichmuller space of SCFTs on a K3 surface, essentially the space of space-like four-planes in $H^{even}(X,{\mathbb R})$, equipped with the Mukai pairing and lattice $H^{even}(X,{\mathbb Z})$, which has signature $(4,20)$. To first approximation, one can view one of these four-planes as the subspace spanned by the real and imaginary parts of a holomorphic two-form, the Kaehler form, and the exponential of the $B$-field (although the actual description in terms of this data is a bit more complicated). The actual moduli space of SCFTs is obtained by dividing out by the group of automorphisms of the lattice $H^{even}(X,{\mathbb Z})$. This group is generated by the "classical" identifications, coming from automorphisms of $H^2(X,{\mathbb Z})$, and additional automorphisms coming from integral shifts in the $B$-field and finally a choice of "mirror involution". This comes from a choice of a hyperbolic plane $H\subset H^2(X,{\mathbb Z})$, and the mirror involution exchanges the hyperbolic plane $H^0(X,{\mathbb Z})\oplus H^4(X,{\mathbb Z})$ with $H$ and leaves everything else fixed.

The choice of hyperbolic plane $H$ can be viewed as the choice of $H$ in the Dolgachev construction. This involution acts on the full Teichmuller space of SCFTs, but after making some choices, one sees that it restricts to Dolgachev's description of mirror K3 families. I can provide more details if needed.

$\endgroup$

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge that you have read and understand our privacy policy and code of conduct.

Not the answer you're looking for? Browse other questions tagged or ask your own question.