All Questions

Filter by
Sorted by
Tagged with
2 votes
0 answers
88 views

Dimension of Laplacian eigenspaces along a smooth 1-parameter family of metrics

Let $(M^n,g)$ be a closed Riemannian manifold, $n \geq 2$. For a smooth 1-parameter family $g_t$, $t \in (-\varepsilon, \varepsilon)$, of Riemannian metrics on $M$ with $g_0 = g$, let $\lambda_k(t)$, $...
Eduardo Longa's user avatar
3 votes
2 answers
179 views

Domain of spectral fractional Laplacian

Let $(M,g)$ be a complete Riemannian manifold with Laplacian $\Delta:C^{\infty}_{c}(M)\to C^{\infty}_{c}(M)$ (think of $\mathbb{R}^{d}$ if you wish). This operator is essentially self-adjoint in $L^{2}...
B.Hueber's user avatar
  • 833
3 votes
1 answer
195 views

Convergence of spectrum

Let $M$ be a compact manifold and $g_k$ be a sequence of Riemannain metrics smoothly converging to another Riemannian metric $g$. Let $\{\lambda^k_j\}$ be the spectrum of the Laplacian of the ...
Hammerhead's user avatar
  • 1,171
4 votes
1 answer
139 views

Existence of a domain with simple Dirichlet eigenvalues

Let $g$ be a smooth Riemannian metric on $\mathbb R^3$ that coincides with the Euclidean metric outside a compact set $K$. Does there exist some domain $\Omega$ with smooth boundary such that $K \...
Ali's user avatar
  • 3,987
4 votes
0 answers
121 views

Eigenvalues of Schrödinger operator with Robin condition on the boundary

Let $(M^2,g)$ be a compact Riemannian surface with boundary and let $L = \Delta_g + q$ be a Schrödinger operator, where $\Delta_g = -\operatorname{div} \nabla$ is the Laplacian with respect to the ...
Eduardo Longa's user avatar
2 votes
0 answers
52 views

Examples of elementary group of isometries of the ideal boundary of hyperbolic plane

A Riemannian manifold $(X,g)$ is called Hadamard manifold if it is complete and simply connected and has everywhere non-positive sectional curvature. An example of such a manifold would be the ...
Quanta's user avatar
  • 41
13 votes
1 answer
375 views

Why are we interested in spectral gaps for Laplacian operators

Let $M$ be a Riemannian manifold and let $\Delta$ be its Laplacian operator. There is a large literature on a spectral gap for such a $\Delta$, that is, finding an interval $(0,c)$ which does not ...
Sven Mortenson's user avatar
4 votes
0 answers
156 views

Hodge theory in higher eigen-spaces?

Hodge theory for elliptic complexes $E$ identifies the space of harmonic sections with cohomology $$\mathcal{H}(E) \simeq H(E).$$ A classical example with differential forms ($E = (\Omega,d)$) ...
Student's user avatar
  • 4,760
1 vote
0 answers
96 views

Question about Dirac operator

Let $D$ be a generalized Dirac operator on a complete Riemannian manifold. I'm a little confused to prove that there exists a constant $c>0$ such that $$\|D\sigma\|^2\geq c^2\|\sigma\|^2$$ for $\...
Radeha Longa's user avatar
4 votes
0 answers
74 views

On the convergence of the spectral decomposition of a harmonic function

Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n\geq 2$ with a smooth boundary. Denote by $0<\lambda_1\leq \lambda_2\leq\ldots$ the Dirichlet eigenvalues of $-\Delta_g$ on $(M,g)$...
Ali's user avatar
  • 3,987
2 votes
0 answers
54 views

Weyl asymptotic in towers

Let $M$ be a compact Riemannian manifold. The Weyl law gives the asymptotic of the counting function $N(T)$ of Laplace eigenvalues $|\lambda|\le T$ as $T\to\infty$. Now suppose you are given a tower ...
Echo's user avatar
  • 1,900
2 votes
0 answers
78 views

Proving an eigenvalue bound without resorting to Weyl's law

Suppose $(M,g)$ is a smooth compact Riemannian manifold of dimension $n\geq 2$ with smooth boundary and denote by $\{\phi_k,\lambda_k\}_{k\in \mathbb N}$ its Dirihclet spectral decomposition for the ...
Ali's user avatar
  • 3,987
2 votes
0 answers
63 views

Weyl's law and eigenfunction bounds for weighted Laplace-Beltrami operator

I would appreciate any answers or even references for the following problem. Let $(M,g)$ be a complete smooth Riemannian manifold with an asymptotically Euclidean metric (let's even say that the ...
Ali's user avatar
  • 3,987
1 vote
1 answer
71 views

A property for generic pairs of functions and metrics

Let $M$ be a compact smooth manifold with a smooth boundary. Given a smooth Riemannian metric $g$ on $M$, we denote by $\{\phi_k\}_{k=1}^{\infty}$ an $L^2(M)$--orthonormal basis consisting of ...
Ali's user avatar
  • 3,987
2 votes
1 answer
240 views

Compactness for initial-to-final map for heat equation

Let $M$ be a compact smooth manifold without boundary. Let $T>0$ and let $g$ be a smooth Riemannian metric on $M$. Given any $f \in L^2(M)$ let $u$ be the unique solution to the equation $$\...
Ali's user avatar
  • 3,987
4 votes
1 answer
275 views

First eigenvalue of the Laplacian on the traceless-transverse 2-forms

Let $(S^3/\Gamma, g)$ be a spherical space form with constant sectional curvature $1$, where $\Gamma$ is a finite subgroup of $SO(4)$ acting freely on $S^3$. Consider the first nonzero eigenvalue ...
Zhiqiang's user avatar
  • 687
2 votes
0 answers
52 views

A question about the choice of a special harmonc spinor

Let $X$ be a complete Riemannian manifold and $H$ be the kernel of generalized Dirac operator $D$ on $L(S)$, where $S$ is the Dirac bundle. Let $K$ be a compact subset of $X$ and $K\subset \Omega$ be ...
Radeha Longa's user avatar
2 votes
1 answer
87 views

Orthogonal decomposition of $L^2(SM)$

I have been stuck on the following problem for a long time but I could not get the answer. Would you please help me? I was reading one paper [Paternian Salo Uhlmann: Tensor tomography on the surface] ...
Curious student's user avatar
5 votes
1 answer
305 views

Lower bound on the first eigenvalue of the Lichnerowicz Laplacian on positive Einstein manifolds

Suppose $(M^n,g)$ is an $n$-dimensional Einstein manifold with $Ric=(n-1)g$. Let $\lambda$ be the minimal eigenvalue of the Lichnerowicz Laplacian $\Delta_L$ defined on all transverse-traceless ...
Zhiqiang's user avatar
  • 687
4 votes
0 answers
134 views

Products of eigenfunctions on compact Riemann surfaces

Let $M$ be a compact Riemann surface with genus $g\geq 2$, endowed with the Riemannian metric with constant sectional curvature $-1$. Let $f_1, f_2$ be two (global) eigenfunctions for the Laplace-...
clvolkov's user avatar
  • 193
4 votes
0 answers
128 views

Eigenvalues of Laplacian and eigenvalues of curvature operator

Let $(M^n,g)$ be a compact Riemannian manifold (without boundary). The symmetries of the curvature $R$ of (the Levi-Civita connection associated to) $g$ allow one to realise $R$ as a self-adjoint (...
GradStudent's user avatar
7 votes
2 answers
517 views

Exponential convergence of Ricci flow

I've been trying to understand the asymptotic behavior of Ricci flow, and there are two facts which I am unable to square away. I'm interested in higher dimensional manifolds, but my question is ...
Gabe K's user avatar
  • 5,304
2 votes
0 answers
246 views

Spectrum of the Witten Laplacian on compact Riemannian manifolds

Below I have given what I am calling as the ${\rm Witten{-}Laplacian}_{s,p}$ on a Riemannian manifold $(M,g)$ for any constant $s >0$ and $p \in C^2(M,g)$ How generally is it true that this ${\rm ...
gradstudent's user avatar
  • 2,136
2 votes
0 answers
95 views

Principal eigenvalue of non self-adjoint elliptic operators on closed manifolds

Consider the elliptic operator $Lu = - \Delta u + \langle \nabla u , X \rangle + c \, u $ acting on functions on a closed Riemannian manifold $M$. Here $\Delta$ denotes the Laplace-Beltrami operator, $...
Ramiro Lafuente's user avatar
14 votes
1 answer
606 views

Eigenfunctions of the laplacian on $\mathbb{CP}^n$

I want to find explicit formulas for the eigenfunctions of the Laplacian on $\mathbb{CP}^n$ endowed with the Fubini Study metric. For the first eigenvalue $\lambda_1 = 4(n+1)$, the eigenfunctions ...
freidtchy's user avatar
  • 320
5 votes
1 answer
262 views

Combinatorial Skeleton of a Riemannian manifold

In Chung and Yau's paper: "A combinatorial trace formula" (MSN), they proved a combinatorial version of Selberg's trace formula for lattice graphs. I learned also in the setup that it makes sense to ...
Student's user avatar
  • 4,760
18 votes
2 answers
2k views

Eigenvalues of the Laplace-Beltrami operator on a compact Riemannnian manifold

Let $(M,g)$ be a compact Riemannian manifold, and let $\Delta_g$ be its Laplace-Beltrami operator. A "well-known fact" is that the eigenvalues of $\Delta_g$ have finite multiplicity and tend to ...
Max Schattman's user avatar
1 vote
0 answers
46 views

The Morse Index of a $T$- periodic geodesics is a integer number?

It is well known that compact Riemannian manifolds $(M, g)$ with periodic geodesic flows have ( Besse Book) exceptional spectral properties: the spectrum of $ \sqrt{ - \Delta}$, the square root of ...
Marcelo Ng's user avatar
2 votes
0 answers
140 views

Off-diagonal estimates for Poisson kernels on manifolds

Let $(M,g)$ be a complete Riemannian manifold, $\Delta$ its Laplace-Beltrami operator and $T_t = (e^{t \Delta})_{t \geq 0}$ the associated heat semigroup. We can define the subordinated Poisson ...
Adrián González Pérez's user avatar
19 votes
1 answer
497 views

Do eigenfunctions determine the geometry of a manifold? If so, do finitely many suffice?

Let $X$ be a smooth, Riemannian manifold. It is known that the geometry of $X$ can be recovered from its heat kernel $k_{t}(x,y)$, using Varadhan's Lemma: $\displaystyle\lim_{t \to 0} t \log k_{t}(x,y)...
Elchanan Solomon's user avatar
7 votes
0 answers
80 views

Eigenvalue lower bounds for manifold with positive Ricci curvature

For closed $n$-manifold with Ricci curvature $\ge (n-1)$, it is known that the first eigenvalue $\lambda_1\ge n$ with equality holds if and only if $M$ is isometric to the Euclidean sphere $S^n$. My ...
user60933's user avatar
  • 481
7 votes
2 answers
527 views

Radial symmetry of the first eigenfunction

Let $M$ be a simply connected space form (i.e. $\mathbb R^n$, sphere, or hyperbolic space) and $B$ be a ball in $M$. Let $\phi$ be the first Laplacian eigenfunction on $B$, with respect to the ...
A private person's user avatar
17 votes
3 answers
735 views

Does a spectral gap lift to covering spaces?

Let $M$ be a complete Riemannian manifold. Denote $\Delta_M\ge0$ the unique self-adjoint extension of the Laplace-Beltrami operator in $L^2(M)$ and $\sigma(\Delta_M)\subset [0,\infty)$ its spectrum. ...
Jan Bohr's user avatar
  • 753
3 votes
0 answers
232 views

Does the zeta regularized Laplacian determinant measure the volume of some parameter space? How many "spanning trees" on a manifold?

Let $(M,g)$ be a Riemannian manifold, with Laplacian $\Delta$. If $\lambda_i$ are the nonzero eigenvalues of $\Delta$, we can define the zeta function $\zeta(s) = \Sigma \lambda_i^{-s}$. By analytic ...
Areaperson's user avatar
  • 1,422
5 votes
1 answer
415 views

What is $e^{- \zeta_{\Delta} '(0)}$ for a $\Delta$ the Laplacian of a manifold?

For a connected, finite graph $G$, let $\lambda_1, \ldots, \lambda_n$ denote the nonzero eigenvalues of the graph Laplacian. We define $\zeta_G = \Sigma_{i = 1}^n \lambda_i^s$. Then Kirkoffs Matrix-...
Areaperson's user avatar
  • 1,422
3 votes
0 answers
108 views

Is the square root of curl^2-1/2 a natural (Dirac-)operator?

In current computations on a particular $3$-dimensional Riemannian manifold, a first order differential operator $D:\Gamma^\infty(TM,M)\to \Gamma^\infty(TM,M)$ acting on vector fiels shows up, with ...
B K's user avatar
  • 1,880
7 votes
1 answer
274 views

Harmonic functions on $(M,g)$ closed, induce an embedding in Euclidean space

In Hajime Urakawa's monograph The Spectral Geometry of the Laplacian on page 41, we make an assumption that I can't quite justify on my own. The following is our setup: Let $(M^n,g)$ be a closed ...
Dominic Wynter's user avatar
23 votes
1 answer
1k views

Eigenvalues of Laplace operator

Assume that $(M,g)$ is a Riemannian manifold. Is there any relation between the sequence of eigenvalues of Laplace operator acting on the space of smooth functions and the sequence of eigenvalues of ...
Ali Taghavi's user avatar
28 votes
6 answers
3k views

Why is there no symplectic version of spectral geometry?

First, recall that on a Riemannian manifold $(M,g)$ the Laplace-Beltrami operator $\Delta_g:C^\infty(M)\to C^\infty(M)$ is defined as $$ \Delta_g=\mathrm{div}_g\circ\mathrm{grad}_g, $$ where the ...
B K's user avatar
  • 1,880
6 votes
0 answers
361 views

Steklov eigenvalue problem for a planar region bounded by ellipse

The Steklov problem for a compact planar region $\Omega$ is \begin{cases} \Delta u =0 &\text{in $\Omega$}, \\ \frac{\partial u}{\partial n} = \sigma u &\text{on $\partial \Omega$}, \end{...
Donghwi Seo's user avatar
8 votes
0 answers
218 views

Regularilty of Commutative Spectral Triples

In Connes' approach to non-commutative geometry, the notion of a spectral triple is said to generalize compact Riemannian manifolds to the non-commutative setting. Motivating classical examples ...
Noel Brown's user avatar
5 votes
1 answer
238 views

The first eigenfunction of Dirac operator for surface

Let $M$ be a spherical oriented surface with Riemannian metric and with trivial spin structure. We know that the equation $$D \phi = \rho \phi$$, where $\rho: M\rightarrow \mathbb{R}$ is a real scalar ...
Z. Ye's user avatar
  • 121
2 votes
1 answer
91 views

literature/reference request for estimates of first eigenvalue of certain Schrodinger operator on compact surfaces

On compact Riemannian surfaces (say without boundary), the Schrodinger operator I am interested in is of the form $-\Delta+2\kappa$, where $\kappa$ is the Gauss curvature. For minimal surfaces in $\...
Piojo's user avatar
  • 763
6 votes
0 answers
179 views

Geometrically-explicit upper bound for on-diagonal heat kernel

Let $M$ be a compact Riemannian manifold, and $K(t;z,w)$ the heat kernel associated to the usual Laplace-Beltrami operator on functions. There are results of the form $$K(t;z,z) \leq \frac{C_M}{f_z(t)...
Giovanni De Gaetano's user avatar
1 vote
1 answer
171 views

Zero set of eigenfunction along a sub manifold

Let $M$ be a 2-dimensional closed Riemannian manifold and let $$\phi:M\rightarrow M$$ be an isometry with $\phi^2=Id_M$. Consider the fixed point set $$F:=\lbrace x\in M: \phi(x)=x \rbrace\subset M,$$ ...
Hasti Musti's user avatar
9 votes
1 answer
282 views

The scope of correspondence principle in quantum chaos

My understanding of the so-called correspondence principle in quantum chaos, is that it is a connection between the behaviour of a classical Hamiltonian system (chaotic/completely integrable) and the ...
Pig's user avatar
  • 809
18 votes
3 answers
1k views

Spectral properties of the Laplace operator and topological properties

Suppose that $M$ is a closed Riemannian manifold: one can construct the so called Laplace-Beltrami operator on $M$. Its spectrum contains some information of the underlying manifold: for example its ...
Justynaw's user avatar
  • 181
10 votes
1 answer
1k views

Multiplicity of Laplace eigenvalues

Disclaimer: This is a very heuristic question and I will be satisfied with heuristic insights, if rigorous and precise answers are not possible. All the examples of closed surfaces (or higher ...
user82132's user avatar
  • 101
5 votes
1 answer
316 views

Convergence of Riemannian metrics spectra

Consider a one-parameter real analytic family of metrics $g_t$ on a compact manifold $M$ converging to a metric $g$ in $C^k$-norm, for some $k$. It is known that the Laplace spectrum of $g_t$ will ...
student's user avatar
  • 51
13 votes
1 answer
441 views

A question on a result of Colin de Verdière

Consider a compact connected surface $M$ of some genus $\gamma \geq 2$. A particular case of a famous result of Colin de Verdière (see Construction de laplaciens dont une partie finie du spectre est ...
SMS's user avatar
  • 1,293